Equivalent noise properties of scalable continuous-variable cluster states

被引:1
|
作者
Walshe, Blayney W. [1 ]
Alexander, Rafael N. [1 ]
Matsuura, Takaya [1 ]
Baragiola, Ben Q. [1 ,2 ]
Menicucci, Nicolas C. [1 ]
机构
[1] RMIT Univ, Ctr Quantum Computat & Commun Technol, Sch Sci, Melbourne, Vic 3000, Australia
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kitashirakawa Oiwakecho,Sakyo ku, Kyoto 6068502, Japan
基金
日本科学技术振兴机构; 澳大利亚研究理事会;
关键词
GENERATION;
D O I
10.1103/PhysRevA.108.042602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical continuous-variable cluster states (CVCSs) in combination with Gottesman-Kitaev-Preskill (GKP) qubits enable fault-tolerant quantum computation so long as these resources are of high enough quality. Previous studies concluded that a particular CVCS, the quad rail lattice (QRL), exhibits a lower GKP gate-error rate than others do. We show in this work that many other experimentally accessible CVCSs also achieve this level of performance by identifying operational equivalences to the QRL. Under this equivalence, the GKP Clifford gate set for each CVCS maps straightforwardly from that of the QRL, inheriting its noise properties. Furthermore, each cluster state has at its heart a balanced four-splitter-the four-mode extension to a balanced beam splitter. We classify all four-splitters, show they form a single equivalence class under SWAP and parity operators, and give a construction of any four-splitter with linear optics, thus extending the toolbox for theoretical and experimental cluster-state design and analysis.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform
    Wu, Bo-Han
    Alexander, Rafael N.
    Liu, Shuai
    Zhang, Zheshen
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [2] Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states
    Larsen, Mikkel, V
    Neergaard-Nielsen, Jonas S.
    Andersen, Ulrik L.
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [3] Quantum memory for entangled continuous-variable states
    Jensen, K.
    Wasilewski, W.
    Krauter, H.
    Fernholz, T.
    Nielsen, B. M.
    Owari, M.
    Plenio, M. B.
    Serafini, A.
    Wolf, M. M.
    Polzik, E. S.
    NATURE PHYSICS, 2011, 7 (01) : 13 - 16
  • [4] Noisy certification of continuous-variable graph states
    Descamps, Eloi
    Markham, Damian
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [5] Subsystem analysis of continuous-variable resource states
    Pantaleoni, Giacomo
    Baragiola, Ben Q.
    Menicucci, Nicolas C.
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [6] Properties of hybrid entanglement between discrete- and continuous-variable states of light
    Costanzo, L. S.
    Zavatta, A.
    Grandi, S.
    Bellini, M.
    Jeong, H.
    Kang, M.
    Lee, S-W
    Ralph, T. C.
    PHYSICA SCRIPTA, 2015, 90 (07)
  • [7] Scalable Squeezed-Light Source for Continuous-Variable Quantum Sampling
    Vernon, Z.
    Quesada, N.
    Liscidini, M.
    Morrison, B.
    Menotti, M.
    Tan, K.
    Sipe, J. E.
    PHYSICAL REVIEW APPLIED, 2019, 12 (06):
  • [8] Cluster States from Gaussian States: Essential Diagnostic Tools for Continuous-Variable One-Way Quantum Computing
    Gonzalez-Arciniegas, Carlos
    Nussenzveig, Paulo
    Martinelli, Marcelo
    Pfister, Olivier
    PRX QUANTUM, 2021, 2 (03):
  • [9] Continuous-variable Quantum Teleportation of States Multiplexed in Time Domain
    Charoensombutamon, Baramee
    Asavanant, Warit
    Nakamura, Tomohiro
    Ebihara, Takeru
    Yokoyama, Shota
    Alexander, Rafael N.
    Menicucci, Nicolas C.
    Endo, Mamoru
    Yoshikawa, Jun-ichi
    Yonezawa, Hidehiro
    Furusawa, Akira
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [10] Continuous-variable entanglement on a chip
    Masada, Genta
    Miyata, Kazunori
    Politi, Alberto
    Hashimoto, Toshikazu
    O'Brien, Jeremy L.
    Furusawa, Akira
    NATURE PHOTONICS, 2015, 9 (05) : 316 - 319