NON-STATIONARY VERSION OF ERGODIC THEOREM FOR RANDOM DYNAMICAL SYSTEMS

被引:1
|
作者
Gorodetski, Anton [1 ]
Kleptsyn, Victor [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Inst Math Res Rennes, IRMAR, CNRS, UMR 6625, Rennes, France
基金
瑞典研究理事会;
关键词
Non-stationary ergodic theorem; random dynami-cal systems; random matrix products; PRODUCTS;
D O I
10.17323/1609-4514-2023-23-4-515-532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a version of pointwise ergodic theorem for non-stationary random dynamical systems. Also, we discuss two specific examples where the result is applicable: non-stationary iterated function systems and non-stationary random matrix products.
引用
收藏
页码:515 / 532
页数:18
相关论文
共 50 条
  • [41] Stationary and non-stationary random vibration of oscillators with bilinear hysteresis
    Faculty of Civil Engineering, Norwegian Univ. of Sci. and Technol., Rich. Birkelands vei 1a, N-7034 Trondheim, Norway
    International Journal of Non-Linear Mechanics, 1996, 31 (5 SPEC. ISS.): : 553 - 562
  • [42] NUMERICAL SIMULATION OF STATIONARY AND NON-STATIONARY GAUSSIAN RANDOM PROCESSES
    FRANKLIN, JN
    SIAM REVIEW, 1965, 7 (01) : 68 - &
  • [43] TAKENS THEOREM FOR RANDOM DYNAMICAL SYSTEMS
    Li, Weigu
    Lu, Kening
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 3191 - 3207
  • [44] Extremal clustering in non-stationary random sequences
    Graeme Auld
    Ioannis Papastathopoulos
    Extremes, 2021, 24 : 725 - 752
  • [45] Extremal clustering in non-stationary random sequences
    Auld, Graeme
    Papastathopoulos, Ioannis
    EXTREMES, 2021, 24 (04) : 725 - 752
  • [46] The SLEX Model of a Non-Stationary Random Process
    Hernando Ombao
    Jonathan Raz
    Rainer von Sachs
    Wensheng Guo
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 171 - 200
  • [47] The SLEX model of a non-stationary random process
    Ombao, H
    Raz, J
    von Sachs, R
    Guo, WS
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (01) : 171 - 200
  • [48] Homogenization of random diffusions in non-stationary environments
    Boryc, Marcin
    Komorowski, Tomasz
    ASYMPTOTIC ANALYSIS, 2014, 90 (1-2) : 1 - 20
  • [49] Structure lifecycle as a non-stationary random process
    Fu, G.
    Devaraj, D.
    APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 626 - 633
  • [50] NON-STATIONARY RANDOM RESPONSE OF A FINITE CABLE
    ALBERTI, FP
    JOURNAL OF SOUND AND VIBRATION, 1983, 86 (02) : 227 - 233