Bifurcations of Phase Portraits, Exact Solutions and Conservation Laws of the Generalized Gerdjikov-Ivanov Model

被引:7
作者
Kudryashov, Nikolay A. [1 ]
Lavrova, Sofia F. [1 ]
Nifontov, Daniil R. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, 31 Kashirskoe Shosse, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
Gerdjikov-Ivanov equation; phase portraits; conservation laws; periodic and solitary wave; optical soliton; partial differential equations; first integral; exact solutions; solitary wave; OPTICAL SOLITON PERTURBATION; BIREFRINGENT FIBERS; EQUATION;
D O I
10.3390/math11234760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article explores the generalized Gerdjikov-Ivanov equation describing the propagation of pulses in optical fiber. The equation studied has a variety of applications, for instance, in photonic crystal fibers. In contrast to the classical Gerdjikov-Ivanov equation, the solution of the Cauchy problem for the studied equation cannot be found by the inverse scattering problem method. In this regard, analytical solutions for the generalized Gerdjikov-Ivanov equation are found using traveling-wave variables. Phase portraits of an ordinary differential equation corresponding to the partial differential equation under consideration are constructed. Three conservation laws for the generalized equation corresponding to power conservation, moment and energy are found by the method of direct transformations. Conservative densities corresponding to optical solitons of the generalized Gerdjikov-Ivanov equation are provided. The conservative quantities obtained have not been presented before in the literature, to the best of our knowledge.
引用
收藏
页数:20
相关论文
共 36 条
[1]   Solitons and modulation instability of the perturbed Gerdjikov-Ivanov equation with spatio-temporal dispersion [J].
Al-Kalbani, Kaltham K. ;
Al-Ghafri, K. S. ;
Krishnan, E. V. ;
Biswas, Anjan .
CHAOS SOLITONS & FRACTALS, 2021, 153
[2]   Optical solitons to the Perturbed Gerdjikov-Ivanov equation with quantic nonlinearity [J].
Ali, Karmina K. K. ;
Tarla, Sibel ;
Sulaiman, Tukur Abdulkadir ;
Yilmazer, Resat .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (02)
[3]   Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques [J].
Arshed, Saima ;
Biswas, Anjan ;
Abdelaty, Mahmoud ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
CHINESE JOURNAL OF PHYSICS, 2018, 56 (06) :2879-2886
[4]   Two reliable techniques for the soliton solutions of perturbed Gerdjikov-Ivanov equation [J].
Arshed, Saima .
OPTIK, 2018, 164 :93-99
[5]   Optical soliton perturbation for Gerdjikov-Ivanov equation by extended trial equation method [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Majid, Fayequa B. ;
Triki, Houria ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 158 :747-752
[6]   Optical soliton perturbation with full nonlinearity for Gerdjikov-Ivanov equation by trial equation method [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Triki, Houria ;
Alshomrani, Ali Saleh ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 157 :1214-1218
[7]   Optical solitons for Gerdjikov-Ivanov model by extended trial equation scheme [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Triki, Houria ;
Alshomrani, Ali Saleh ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 157 :1241-1248
[8]   Optical soliton perturbation with Gerdjikov-Ivanov equation by modified simple equation method [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Triki, Houria ;
Alshomrani, Ali Saleh ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 157 :1235-1240
[9]   Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Babatin, M. M. .
OPTIK, 2017, 148 :209-214
[10]   Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfven waves in an astrophysical plasma [J].
Ding, Cui-Cui ;
Gao, Yi-Tian ;
Li, Liu-Qing .
CHAOS SOLITONS & FRACTALS, 2019, 120 :259-265