Regional pooling in extreme event attribution studies: an approach based on multiple statistical testing

被引:0
作者
Zanger, Leandra [1 ]
Buecher, Axel [1 ,2 ]
Kreienkamp, Frank [3 ]
Lorenz, Philip [3 ]
Tradowsky, Jordis S. [3 ,4 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Math Inst, Dusseldorf, Germany
[2] Ruhr Univ Bochum, Fak Math, Bochum, Germany
[3] Deutsch Wetterdienst, Meteorol Observ Potsdam, Potsdam, Germany
[4] Norwegian Meteorol Inst, Oslo, Norway
关键词
Extreme event attribution; Extreme value statistics; Homogeneity tests; Multiple comparison problem; Parametric bootstrap; Max-stable processes; FALSE DISCOVERY RATE; PRECIPITATION;
D O I
10.1007/s10687-023-00480-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Statistical methods are proposed to select homogeneous regions when analyzing spatial block maxima data, such as in extreme event attribution studies. Here, homogeneitity refers to the fact that marginal model parameters are the same at different locations from the region. The methods are based on classical hypothesis testing using Wald-type test statistics, with critical values obtained from suitable parametric bootstrap procedures and corrected for multiplicity. A large-scale Monte Carlo simulation study finds that the methods are able to accurately identify homogeneous locations, and that pooling the selected locations improves the accuracy of subsequent statistical analyses. The approach is illustrated with a case study on precipitation extremes in Western Europe. The methods are implemented in an R package that allows for easy application in future extreme event attribution studies.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 23 条
  • [1] Akaike H., 1973, P 2 INT S INF THEOR, P267
  • [2] Benjamini Y, 2001, ANN STAT, V29, P1165
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] Penalized quasi-maximum likelihood estimation for extreme value models with application to flood frequency analysis
    Buecher, Axel
    Lilienthal, Jona
    Kinsvater, Paul
    Fried, Roland
    [J]. EXTREMES, 2021, 24 (02) : 325 - 348
  • [5] On the maximum likelihood estimator for the Generalized Extreme-Value distribution
    Buecher, Axel
    Segers, Johan
    [J]. EXTREMES, 2017, 20 (04) : 839 - 872
  • [6] Coles S., 2001, An Introduction to Statistical Modeling of Extreme Values, DOI DOI 10.1007/978-1-4471-3675-0
  • [7] An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets
    Cornes, Richard C.
    van der Schrier, Gerard
    van den Besselaar, Else J. M.
    Jones, Philip D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (17) : 9391 - 9409
  • [8] Dalrymple T., 1960, US GEOLOGICAL SURVEY
  • [9] Statistical Modeling of Spatial Extremes
    Davison, A. C.
    Padoan, S. A.
    Ribatet, M.
    [J]. STATISTICAL SCIENCE, 2012, 27 (02) : 161 - 186
  • [10] Geostatistics of extremes
    Davison, A. C.
    Gholamrezaee, M. M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2138): : 581 - 608