Involvement of nanoparticles in mitigating plant's abiotic stress

被引:20
|
作者
Dilnawaz, Fahima [1 ]
Misra, Amarendra N. [2 ]
Apostolova, Emilia [3 ]
机构
[1] Centurion Univ Technol & Management, Sch Engn & Technol, Dept Biotechnol, Bhubaneswar 752020, India
[2] Sri Sri Univ, Fac Sci, Cuttack 754006, Odisha, India
[3] Bulgarian Acad Sci, Inst Biophys & Biomed Engn, Acad G Bonchev Str,Bl 21, Sofia 1113, Bulgaria
来源
PLANT STRESS | 2023年 / 10卷
关键词
Abiotic stress; Nanoparticles; Salt stress; Drought; Heavy metal; Stress; Nano-fertilizer; Sustainable development goals (SDG); SDG-2; SDG-13; SDG-15; CERIUM OXIDE NANOPARTICLES; PISUM-SATIVUM L; SALT STRESS; DROUGHT STRESS; PHOTOSYNTHETIC APPARATUS; SILVER NANOPARTICLES; ARABIDOPSIS-THALIANA; SILICON NANOPARTICLES; CADMIUM ACCUMULATION; ZNO NANOPARTICLES;
D O I
10.1016/j.stress.2023.100280
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stress globally has imposed the sternest environmental issues which enforce a significant impact on agricultural food production. Particularly, salinity, drought, heavy metal, and extreme high and low temperature are the principal components of abiotic stresses. The majority of the agricultural land is altered by the stresses and impacted by the reduction of production. An environmental stress response is internally governed by intricate biochemical and molecular signal transduction events, that act in an orchestrated manner for determining the tolerance or sensitivity of the plants. With exposure to abiotic stress, plants respond by reprogramming the interconnected defense networks and metabolic pathways. The variety of agrarian, physiological practices and genetic engineering methods are adapted for promoting plant stress adaptability. With the advent of nanotechnology, its application in agriculture has emerged as a valuable tool to reach the goal of sustainable food production worldwide. Nanoparticles possess unique physicochemical properties which allow them to interact with biological systems in a specific manner in terms of size, large surface area, surface charge, etc. In this regard, numerous studies have been carried out to study the efficacious role of nanoparticles in strengthening plant stress resilience. In this review, we will discuss the molecular mechanisms governing the nanoparticlemediated stress response to increase the potentiality of cultivated plants.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nanoparticles: The Plant Saviour under Abiotic Stresses
    Khalid, Muhammad Fasih
    Khan, Rashid Iqbal
    Jawaid, Muhammad Zaid
    Shafqat, Waqar
    Hussain, Sajjad
    Ahmed, Talaat
    Rizwan, Muhammad
    Ercisli, Sezai
    Pop, Oana Lelia
    Marc, Romina Alina
    NANOMATERIALS, 2022, 12 (21)
  • [2] Fostering nanoscience's strategies: A new frontier in sustainable crop improvement for abiotic stress tolerance
    Mohapatra, Biswajit
    Chamoli, Shivangi
    Salvi, Prafull
    Saxena, Saurabh C.
    PLANT NANO BIOLOGY, 2023, 3
  • [3] Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries
    Bhattacharya, Saswati
    Gupta, Sumanti
    Saha, Jayita
    FUNCTIONAL PLANT BIOLOGY, 2023, 50 (11) : 850 - 869
  • [4] Applications of nanoparticles for mitigating salinity and drought stress in plants: an overview on the physiological, biochemical and molecular genetic aspects
    Heikal, Yasmin M.
    El-Esawi, Mohamed A.
    El-Ballat, Enas M.
    Abdel-Aziz, Heba M. M.
    NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE, 2023, 51 (03) : 297 - 327
  • [5] Higher Plant-Derived Biostimulants: Mechanisms of Action and Their Role in Mitigating Plant Abiotic Stress
    Martinez-Lorente, Sara Esperanza
    Marti-Guillen, Jose Manuel
    Pedreno, Maria angeles
    Almagro, Lorena
    Sabater-Jara, Ana Belen
    ANTIOXIDANTS, 2024, 13 (03)
  • [6] Plant polyamines in abiotic stress responses
    Gupta, Kamala
    Dey, Abhijit
    Gupta, Bhaskar
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (07) : 2015 - 2036
  • [7] Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response
    Kosova, Klara
    Vitamvas, Pavel
    Prasil, Ilja Tom
    Renaut, Jenny
    JOURNAL OF PROTEOMICS, 2011, 74 (08) : 1301 - 1322
  • [8] The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica
    del Carmen Martinez-Ballesta, Maria
    Moreno, Diego A.
    Carvajal, Micaela
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (06) : 11607 - 11625
  • [9] Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions
    Javed, Talha
    Shabbir, Rubab
    Hussain, Sadam
    Naseer, Muhammad Asad
    Ejaz, Irsa
    Ali, Muhamamd Moaaz
    Ahmar, Sunny
    Yousef, Ahmed Fathy
    FUNCTIONAL PLANT BIOLOGY, 2023, 50 (11) : 831 - 849
  • [10] Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects
    Sharma, Megha
    Kumar, Pankaj
    Verma, Vipasha
    Sharma, Rajnish
    Bhargava, Bhavya
    Irfan, Mohammad
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 179 : 10 - 24