Subway Platform Passenger Flow Counting Algorithm Based on Feature-Enhanced Pyramid and Mixed Attention

被引:0
|
作者
Zuo, Jing [1 ]
Liu, Guoyan [1 ]
Yu, Zhao [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1155/2023/6615879
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate access to real-time passenger flows on subway platforms helps to refine management in the era of networked operations. The narrow subway platforms suffer from significant crowd scale discrepancies and complex backgrounds when counting passenger flow. In the proposed passenger flow counting algorithm, the feature-enhanced pyramid structure is used to retain the channel information of deep features and eliminate the aliasing effect caused by fusion to enhance the feature representation of the original image and effectively solve the scale problem. The mixed attention mechanism suppresses background interference by capturing the global context relationship and focusing on the target area. On the ShanghaiTech Part_A dataset, the mean absolute error (MAE) and mean square error (MSE) of the proposed algorithm are 2.3% and 1.4% higher than those of the comparison algorithm, respectively. The MAE and MSE on the self-built platform dataset reach 3.1 and 5.7, respectively. The experimental results show that the accuracy of the proposed algorithm is improved and can meet the counting requirements of the subway platform scene.
引用
收藏
页数:13
相关论文
empty
未找到相关数据