Machine Learning to predict cetacean behaviour using social and environmental features

被引:3
作者
Cherubini, Carla [1 ,2 ]
Saccotelli, Leonardo [3 ]
Caccioppoli, Rocco [3 ]
Fanizza, Carmelo [4 ]
Santacesaria, Francesca Cornelia [4 ]
Lecci, Rita [3 ]
Causio, Salvatore [3 ]
Federico, Ivan [3 ]
Cipriano, Giulia [5 ]
Dimauro, Giovanni [6 ]
Coppini, Giovanni [3 ]
Bellomo, Stefano [4 ]
Carlucci, Roberto [5 ]
Maglietta, Rosalia [1 ,3 ,7 ]
机构
[1] Consiglio Nazl Ric STIIMA, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, I-70125 Bari, Italy
[3] Ctr Euro Mediterraneo Cambiamenti Climatici, Ocean Predict & Applicat Div, I-73100 Lecce, Italy
[4] Jonian Dolphin Conservat, Taranto, Italy
[5] Univ Bari Aldo Moro, Dipartimento Biosci Biotecnol & Ambiente, Bari, Italy
[6] Univ Bari Aldo Moro, Dipartimento Informat, I-70125 Bari, Italy
[7] Consiglio Nazl Ric STIIMA, I-70125 Bari, Italy
来源
2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS, METROSEA | 2023年
关键词
Machine Learning; Random Forest; RUSBoost; cetacean conservation; animal behaviour; Copernicus Marine Service; CLIMATE-CHANGE;
D O I
10.1109/MetroSea58055.2023.10317182
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Understanding how behaviour is influenced by the environment in which animals move and being able to predict it from social and environmental features is a very ambitious but necessary goal for their conservation. This is especially true for cetaceans, marine mammals with very complex social life and ecology which are nowadays facing various threats to their wellbeing and survival. To that aim, we propose a Machine Learning framework, based on Random Forest and RUSBoost algorithms, to predict cetacean behaviour from a plethora of 27 variables, including the group size and oceanographic features provided by Copernicus Marine Service (CMS). Models have been developed using behavioural data collected in the 2016-2021 period on striped, Risso's and bottlenose common dolphins sighted in the Gulf of Taranto. The performance reached with the ML approach for the classification of feeding behaviour is remarkable, with a prediction accuracy achieved by the dedicated models of about 75%. Thus, the proposed strategy can be successfully implemented in future works to forecast target species behaviour and to investigate further the influence of anthropic variables and other habitat characteristics on it in order to enhance their conservation.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 44 条
[1]   Data representations and generalization error in kernel based learning machines [J].
Ancona, Nicola ;
Maglietta, Rosalia ;
Stella, Ettore .
PATTERN RECOGNITION, 2006, 39 (09) :1588-1603
[2]   An evaluation of environmental factors affecting species distributions [J].
Ashcroft, Michael B. ;
French, Kristine O. ;
Chisholm, Laurie A. .
ECOLOGICAL MODELLING, 2011, 222 (03) :524-531
[3]  
Baldwin James Mark, 2018, Diacronia, V7, P1
[4]   A review of supervised learning methods for classifying animal behavioural states from environmental features [J].
Bergen, Silas ;
Huso, Manuela M. ;
Duerr, Adam E. ;
Braham, Melissa A. ;
Schmuecker, Sara ;
Miller, Tricia A. ;
Katzner, Todd E. .
METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (01) :189-202
[5]   Extinction filters mediate the global effects of habitat fragmentation on animals [J].
Betts, Matthew G. ;
Wolf, Christopher ;
Pfeifer, Marion ;
Banks-Leite, Cristina ;
Arroyo-Rodriguez, Victor ;
Ribeiro, Danilo Bandini ;
Barlow, Jos ;
Eigenbrod, Felix ;
Faria, Deborah ;
Fletcher, Robert J., Jr. ;
Hadley, Adam S. ;
Hawes, Joseph E. ;
Holt, Robert D. ;
Klingbeil, Brian ;
Kormann, Urs ;
Lens, Luc ;
Levi, Taal ;
Medina-Rangel, Guido F. ;
Melles, Stephanie L. ;
Mezger, Dirk ;
Morante-Filho, Jose Carlos ;
Orme, C. David L. ;
Peres, Carlos A. ;
Phalan, Benjamin T. ;
Pidgeon, Anna ;
Possingham, Hugh ;
Ripple, William J. ;
Slade, Eleanor M. ;
Somarriba, Eduardo ;
Tobias, Joseph A. ;
Tylianakis, Jason M. ;
Nicolas Urbina-Cardona, J. ;
Valente, Jonathon J. ;
Watling, James I. ;
Wells, Konstans ;
Wearn, Oliver R. ;
Wood, Eric ;
Young, Richard ;
Ewers, Robert M. .
SCIENCE, 2019, 366 (6470) :1236-+
[6]  
Blasi L, 2014, One, V9
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Managing multiple pressures for cetaceans? conservation with an Ecosystem-Based Marine Spatial Planning approach [J].
Carlucci, Roberto ;
Manea, Elisabetta ;
Ricci, Pasquale ;
Cipriano, Giulia ;
Fanizza, Carmelo ;
Maglietta, Rosalia ;
Gissi, Elena .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 287
[9]  
Carlucci R, 2018, 2018 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA
[10]  
LEARNING TO MEASURE SEA HEALTH PARAMETERS (METROSEA), P173, DOI 10.1109/MetroSea.2018.8657847