Global regularity of 2D Navier-Stokes free boundary with small viscosity contrast

被引:3
|
作者
Gancedo, Francisco [1 ]
Garcia-Juarez, Eduardo [2 ]
机构
[1] Univ Seville, Dept Anal Matemat & IMUS, C Tarfia S-N,Campus Reina Mercedes, Seville 41012, Spain
[2] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2023年 / 40卷 / 06期
基金
欧盟地平线“2020”;
关键词
Navier-Stokes; free boundary; inhomogeneous; global regularity; VISCOUS SURFACE-WAVES; INITIAL-VALUE-PROBLEM; LARGE-TIME EXISTENCE; DENSITY PATCHES; WELL-POSEDNESS; EQUATIONS; DECAY; SINGULARITY; SYSTEM; FLUIDS;
D O I
10.4171/AIHPC/74
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the dynamics of two incompressible immiscible fluids in two dimensions modeled by the inhomogeneous Navier-Stokes equations. We prove that if initially the viscosity contrast is small then there is global-in-time regularity. This result has been proved recently in Paicu and Zhang [Comm. Math. Phys. 376 (2020)] for H-5/2 Sobolev regularity of the inter-face. Here we provide a new approach which allows us to obtain preservation of the natural C (1+Y) Holder regularity of the interface for all 0 < y < 1. Our proof is direct and allows for low Sobolev regularity of the initial velocity without any extra technicalities. It uses new quantitative harmonic analysis bounds for C-Y norms of even singular integral operators on characteristic functions of C (1+Y) domains [Gancedo and Garcia-Juarez, J. Funct. Anal. 283 (2022)].
引用
收藏
页码:1319 / 1352
页数:34
相关论文
共 50 条
  • [1] Global Regularity of 2D Density Patches for Inhomogeneous Navier-Stokes
    Gancedo, Francisco
    Garcia-Juarez, Eduardo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (01) : 339 - 360
  • [2] Splash Singularities for the Free Boundary Navier-Stokes Equations
    Castro, Angel
    Cordoba, Diego
    Fefferman, Charles
    Gancedo, Francisco
    Gomez-Serrano, Javier
    ANNALS OF PDE, 2019, 5 (01)
  • [3] Striated Regularity of 2-D Inhomogeneous Incompressible Navier-Stokes System with Variable Viscosity
    Paicu, Marius
    Zhang, Ping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (01) : 385 - 439
  • [4] A geometric trapping approach to global regularity for 2D Navier-Stokes on manifolds
    Bulut, Aynur
    Huynh, Manh Khang
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (04) : 969 - 1010
  • [5] Uniform regularity for free-boundary Navier-Stokes equations with surface tension
    Elgindi, Tarek
    Lee, Donghyun
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (01) : 37 - 118
  • [6] Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity
    Li, Kunquan
    AIMS MATHEMATICS, 2024, 9 (05): : 12412 - 12432
  • [7] On the global wellposedness of free boundary problem for the Navier-Stokes system with surface tension
    Saito, Hirokazu
    Shibata, Yoshihiro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 384 : 1 - 92
  • [8] Global regularity to the Cauchy problem of the 3D heat conducting incompressible Navier-Stokes equations
    Xu, Hao
    Yu, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 823 - 837
  • [9] GLOBAL REGULARITY FOR THE 3D INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DAMPING
    Li, Kwang-Ok
    Kim, Yong-Ho
    APPLICATIONS OF MATHEMATICS, 2022, 68 (02) : 191 - 207
  • [10] The vanishing viscosity limit for 2D Navier-Stokes in a rough domain
    Gerard-Varet, David
    Lacave, Christophe
    Nguyen, Toan T.
    Rousset, Frederic
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 45 - 84