Global regularity of 2D Navier-Stokes free boundary with small viscosity contrast

被引:4
作者
Gancedo, Francisco [1 ]
Garcia-Juarez, Eduardo [2 ]
机构
[1] Univ Seville, Dept Anal Matemat & IMUS, C Tarfia S-N,Campus Reina Mercedes, Seville 41012, Spain
[2] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2023年 / 40卷 / 06期
基金
欧盟地平线“2020”;
关键词
Navier-Stokes; free boundary; inhomogeneous; global regularity; VISCOUS SURFACE-WAVES; INITIAL-VALUE-PROBLEM; LARGE-TIME EXISTENCE; DENSITY PATCHES; WELL-POSEDNESS; EQUATIONS; DECAY; SINGULARITY; SYSTEM; FLUIDS;
D O I
10.4171/AIHPC/74
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the dynamics of two incompressible immiscible fluids in two dimensions modeled by the inhomogeneous Navier-Stokes equations. We prove that if initially the viscosity contrast is small then there is global-in-time regularity. This result has been proved recently in Paicu and Zhang [Comm. Math. Phys. 376 (2020)] for H-5/2 Sobolev regularity of the inter-face. Here we provide a new approach which allows us to obtain preservation of the natural C (1+Y) Holder regularity of the interface for all 0 < y < 1. Our proof is direct and allows for low Sobolev regularity of the initial velocity without any extra technicalities. It uses new quantitative harmonic analysis bounds for C-Y norms of even singular integral operators on characteristic functions of C (1+Y) domains [Gancedo and Garcia-Juarez, J. Funct. Anal. 283 (2022)].
引用
收藏
页码:1319 / 1352
页数:34
相关论文
共 43 条
[1]  
Abels H, 2005, ADV DIFFERENTIAL EQU, V10, P45
[2]  
[Anonymous], 1991, Algebra i Analiz
[3]  
[Anonymous], 1975, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
[4]  
[Anonymous], 1975, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
[5]  
Beale J. T., 1985, Recent Topics in Nonlinear PDE II, P1
[7]  
BEALE JT, 1984, ARCH RATION MECH AN, V84, P307
[8]   GLOBAL REGULARITY FOR VORTEX PATCHES [J].
BERTOZZI, AL ;
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :19-28
[9]   OPTIMAL WELL-POSEDNESS FOR THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM WITH GENERAL VISCOSITY [J].
Burtea, Cosmin .
ANALYSIS & PDE, 2017, 10 (02) :439-479
[10]   Splash Singularities for the Free Boundary Navier-Stokes Equations [J].
Castro, Angel ;
Cordoba, Diego ;
Fefferman, Charles ;
Gancedo, Francisco ;
Gomez-Serrano, Javier .
ANNALS OF PDE, 2019, 5 (01)