Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure

被引:2
作者
Lu, Jiang [1 ,2 ]
Song, Wenjun [1 ,2 ,3 ]
Liu, Tao [1 ,2 ]
Tang, Jun [1 ,2 ,3 ]
Zhao, Wen [1 ,2 ,3 ]
Li, Duoli [1 ,2 ]
Li, Bo [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Sci & Technol Silicon Devices, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
关键词
Electric field; field limiting rings (FLRs); Kirk effect; multicell; silicon carbide (SiC) power MOSFET; single event burnout (SEB); termination; BURNOUT;
D O I
10.1109/TED.2023.3321278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, the single event response and hardening methods of 1.2 kV silicon carbide (SiC) power MOSFET with multicell and field limiting rings (FLRs) termination structure are investigated by using numerical simulations. Our studies reveal that the termination region is insensitive to single-event burnout (SEB) due to the floating state (no grounded contact hole). It can be found that the electric potential difference along the penetrating path is small. Thus, the Kirk effect could not occur. Conversely, at the cell region, the whole area is connected with the source contact hole, the Kirk effect happens unavoidably if the high bias voltage is applied, leading to a continuous current generation with a local hot spot. Meanwhile, it can be found that the intersection of the cell and termination region is the most sensitive area when the strike position is near the contact hole. In this situation, the huge carriers are generated by the avalanche multiplication behavior like in the cell region. Then, the current will flow along the surface region, resulting in a continual current generation with a local temperature rising. Furthermore, a new hardening technique with a shortened metal plate is proposed. Simulation results indicate that the new structure can alleviate the current accumulation at the intersection region, bringing a better SEB tolerance.
引用
收藏
页码:6459 / 6464
页数:6
相关论文
共 20 条
[1]  
Abbate C, 2019, IEEE T ELECTRON DEV, V66, P4243, DOI 10.1109/TED.2019.2931078
[2]  
[Anonymous], 2017, SENTAURUS TCAD TOOLS
[3]   Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs [J].
Austin, Rebekah A. ;
Sierawski, Brian D. ;
Reed, Robert A. ;
Schrimpf, Ronald D. ;
Galloway, Kenneth F. ;
Ball, Dennis R. ;
Witulski, Arthur F. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) :353-357
[4]   Effects of Breakdown Voltage on Single-Event Burnout Tolerance of High-Voltage SiC Power MOSFETs [J].
Ball, D. R. ;
Galloway, K. F. ;
Johnson, R. A. ;
Alles, M. L. ;
Sternberg, A. L. ;
Witulski, A. F. ;
Reed, R. A. ;
Schrimpf, R. D. ;
Hutson, J. M. ;
Lauenstein, J-M .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (07) :1430-1435
[5]   Ion-Induced Energy Pulse Mechanism for Single-Event Burnout in High-Voltage SiC Power MOSFETs and Junction Barrier Schottky Diodes [J].
Ball, D. R. ;
Hutson, J. M. ;
Javanainen, A. ;
Lauenstein, J. -M. ;
Galloway, K. F. ;
Johnson, R. A. ;
Alles, M. L. ;
Sternberg, A. L. ;
Sierawski, B. D. ;
Witulski, A. F. ;
Reed, R. A. ;
Schrimpf, R. D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) :22-28
[6]   A general design methodology for the optimal multiple-field-limiting-ring structure using device simulator [J].
Cheng, X ;
Sin, JKO ;
Shen, J ;
Huai, YJ ;
Li, RZ ;
Wu, Y ;
Kang, BW .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (11) :2273-2279
[7]  
Kimoto T, 2014, FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY: GROWTH, CHARACTERIZATION, DEVICES, AND APPLICATIONS, P1
[8]  
Knoll L, 2019, PROC INT SYMP POWER, P211, DOI [10.1109/ISPSD.2019.8757648, 10.1109/ispsd.2019.8757648]
[9]  
Lauenstein J. M., 2015, IEEE NUCL SPACE RADI
[10]   Single Event Burnout Hardening Technique for High-Voltage p-i-n Diodes With Field Limiting Rings Termination Structure [J].
Liao, Xinfang ;
Liu, Yi ;
Xu, Changqing ;
Li, Jing ;
Yang, Yintang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (02) :675-681