Roles of Hole Trap on Gate Leakage of p-GaN HEMTs at Cryogenic Temperatures

被引:14
作者
Jiang, Zuoheng [1 ]
Wang, Xinyu [1 ]
Zhao, Junlei [1 ]
Chen, Junting [1 ]
Tang, Jinjin [1 ]
Wang, Chengcai [1 ]
Chen, Haohao [1 ]
Huang, Sen [2 ]
Chen, Xiaolong [1 ]
Hua, Mengyuan [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
[2] Chinese Acad Sci, Key Lab Microelect Devices & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
p-GaN HEMT; cryogenic temperature; frozen trap effect; gate leakage mechanism; DEVICES;
D O I
10.1109/LED.2023.3311395
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
At cryogenic temperatures, p -GaN high- electron-mobility transistors (HEMTs) exhibit a frozen trap effect that causes hole carriers to become trapped in long-lived states, thereby affecting carrier transport. Capacitance deep-level transient spectroscopy (C-DLTS) tests and analysis based on theoretical models are conducted to identify the roles of hole trap on gate leakage current. It is found that frozen hole traps would alter the gate leakage mechanism from Poole-Frenkel (PF) emission to trap-assisted tunneling (TAT) at cryogenic temperatures. Understanding the roles of hole trap on gate leakage is crucial for accurately predicting device performance and optimizing performance for cryogenic applications.
引用
收藏
页码:1612 / 1615
页数:4
相关论文
共 30 条
[1]   Design, Operation, and Loss Characterization of a 1-kW GaN-Based Three-Level Converter at Cryogenic Temperatures [J].
Barth, Christopher B. ;
Foulkes, Thomas ;
Azofeifa, Oscar ;
Colmenares, Juan ;
Coulson, Keith ;
Miljkovic, Nenad ;
Pilawa-Podgurski, Robert C. N. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) :12040-12052
[2]   GaN-on-Si Power Technology: Devices and Applications [J].
Chen, Kevin J. ;
Haeberlen, Oliver ;
Lidow, Alex ;
Tsai, Chun Lin ;
Ueda, Tetsuzo ;
Uemoto, Yasuhiro ;
Wu, Yifeng .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) :779-795
[3]   Influence of the carrier behaviors in p-GaN gate on the threshold voltage instability in the normally off high electron mobility transistor [J].
Chen, Xin ;
Zhong, Yaozong ;
Zhou, Yu ;
Su, Shuai ;
Yan, Shumeng ;
Guo, Xiaolu ;
Gao, Hongwei ;
Zhan, Xiaoning ;
Ouyang, Sihua ;
Zhang, Zihui ;
Bi, Wengang ;
Sun, Qian ;
Yang, Hui .
APPLIED PHYSICS LETTERS, 2021, 119 (06)
[4]   The Kink Effect at Cryogenic Temperatures in Deep Submicron AlGaN/GaN HEMTs [J].
Cuerdo, R. ;
Pei, Y. ;
Chen, Z. ;
Keller, S. ;
DenBaars, S. P. ;
Calle, F. ;
Mishra, U. K. .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (03) :209-212
[5]  
GaN Systems, 2021, GS66502B DAT
[6]  
Gui HD, 2020, IEEE T POWER ELECTR, V35, P5144, DOI [10.1109/TPEL.2019.2944781, 10.1109/tpel.2019.2944781]
[7]   Development of High-Power High Switching Frequency Cryogenically Cooled Inverter for Aircraft Applications [J].
Gui, Handong ;
Zhang, Zheyu ;
Chen, Ruirui ;
Ren, Ren ;
Niu, Jiahao ;
Li, Haiguo ;
Dong, Zhou ;
Timms, Craig ;
Wang, Fei ;
Tolbert, Leon M. ;
Blalock, Benjamin J. ;
Costinett, Daniel ;
Choi, Benjamin B. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (06) :5670-5682
[8]   Characterization and analysis of low-temperature time-to-failure behavior in forward-biased Schottky-type p-GaN gate HEMTs [J].
He, Jiabei ;
Wei, Jin ;
Li, Yang ;
Zheng, Zheyang ;
Yang, Song ;
Huang, Baoling ;
Chen, Kevin J. .
APPLIED PHYSICS LETTERS, 2020, 116 (22)
[9]   VTH Instability of p-GaN Gate HEMTs Under Static and Dynamic Gate Stress [J].
He, Jiabei ;
Tang, Gaofei ;
Chen, Kevin J. .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (10) :1576-1579
[10]   Characterization of hole traps in MOVPE-grown p-type GaN layers using low-frequency capacitance deep-level transient spectroscopy [J].
Kogiso, Tatsuya ;
Narita, Tetsuo ;
Yoshida, Hikaru ;
Tokuda, Yutaka ;
Tomita, Kazuyoshi ;
Kachi, Tetsu .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58