Local well-posedness for the kinetic Cucker-Smale model with super-Coulombic communication weights

被引:5
作者
Choi, Young-Pil [1 ]
Jung, Jinwook [2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei-Ro, Seoul 03722, South Korea
[2] Jeonbuk Natl Univ, Inst Pure & Appl Math, Dept Math, 567 Baekje-daero, Deokjin-gu, Jeonju Si 54896, Jeonrabug Do, South Korea
基金
新加坡国家研究基金会;
关键词
Kinetic Cucker-Smale model; Singular communication weights; Averaging lemma; Well-posedness; FLOCKING DYNAMICS;
D O I
10.1016/j.jde.2023.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the kinetic Cucker-Smale model with super-Coulombic communication weights phi (r) = r-gamma , gamma is an element of (d - 1, d + 1/4) \ {d}. Here d is an element of N denotes the dimension of the spatial domain. By taking into account the singular communication weight as the Fourier multiplier, we establish the local-in-time well-posedness for that kinetic equation in a weighted Sobolev space. In the case of hypersingular communication weights, i.e. gamma is an element of (d, d + 1/4), we additionally make use of the averaging lemma. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:807 / 832
页数:26
相关论文
共 23 条
[11]  
Choi YP, 2017, MODEL SIMUL SCI ENG, P299
[12]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862
[13]  
Fabisiak M., PREPRINT
[14]  
Glassey R., 1996, CAUCHY PROBLEM KINET, DOI [10.1137/1.9781611971477, DOI 10.1137/1.9781611971477]
[15]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125
[16]   UNIFORM STABILITY OF THE CUCKER-SMALE MODEL AND ITS APPLICATION TO THE MEAN-FIELD LIMIT [J].
Ha, Seung-Yeal ;
Kim, Jeongho ;
Zhang, Xiongtao .
KINETIC AND RELATED MODELS, 2018, 11 (05) :1157-1181
[17]  
Ha SY, 2009, COMMUN MATH SCI, V7, P297
[18]  
Ha SY, 2008, KINET RELAT MOD, V1, P415
[19]  
Minakowski P, 2019, MODEL SIMUL SCI ENG, P201, DOI 10.1007/978-3-030-20297-2_7
[20]   The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness [J].
Mucha, Piotr B. ;
Peszek, Jan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 227 (01) :273-308