Densifying SLAM for UAV Navigation by Fusion of Monocular Depth Prediction

被引:1
作者
Habib, Yassine [1 ]
Papadakis, Panagiotis [2 ]
Le Barz, Cedric [1 ]
Fagette, Antoine [3 ]
Goncalves, Tiago [1 ]
Buche, Cedric [4 ]
机构
[1] Thales SIX GTS France, ThereSIS Lab, Palaiseau, France
[2] IMT Atlantique, Team RAMBO, Lab STICC, UMR 6285, Brest, France
[3] Thales Digital Solut, Thales Res & Technol Canada, Montreal, PQ, Canada
[4] ENIB, IRL CNRS CROSSING, Adelaide, SA, Australia
来源
2023 9TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS, ICARA | 2023年
关键词
dense SLAM; monocular depth prediction; drone navigation;
D O I
10.1109/ICARA56516.2023.10125712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simultaneous Localization and Mapping (SLAM) research has reached a level of maturity enabling systems to build autonomously an accurate sparse map of the environment while localizing themselves in that map. At the same time, the use of deep learning has recently brought great improvements in Monocular Depth Prediction (MDP). Some applications such as autonomous drone navigation and obstacle avoidance require dense structure information and cannot only rely on sparse SLAM representation. We propose to densify a state-of-the-art SLAM algorithm using deep learning-based dense MDP at keyframe rate. Towards this goal, we describe a scale recovery from SLAM landmarks by minimizing a depth error metric combined with a multi-view depth refinement using a volumetric approach. We conclude with experiments that attest the added value of our approach in terms of depth estimation.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 22 条
  • [1] CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM
    Bloesch, Michael
    Czarnowski, Jan
    Clark, Ronald
    Leutenegger, Stefan
    Davison, Andrew J.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2560 - 2568
  • [2] The EuRoC micro aerial vehicle datasets
    Burri, Michael
    Nikolic, Janosch
    Gohl, Pascal
    Schneider, Thomas
    Rehder, Joern
    Omari, Sammy
    Achtelik, Markus W.
    Siegwart, Roland
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) : 1157 - 1163
  • [3] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
    Campos, Carlos
    Elvira, Richard
    Gomez Rodriguez, Juan J.
    Montiel, Jose M. M.
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 1874 - 1890
  • [4] DeepFactors: Real-Time Probabilistic Dense Monocular SLAM
    Czarnowski, Jan
    Laidlow, Tristan
    Clark, Ronald
    Davison, Andrew J.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 721 - 728
  • [5] Eigen D, 2014, ADV NEUR IN, V27
  • [6] Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
    Garg, Ravi
    VijayKumar, B. G.
    Carneiro, Gustavo
    Reid, Ian
    [J]. COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 740 - 756
  • [7] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [8] Unsupervised Monocular Depth Estimation with Left-Right Consistency
    Godard, Clement
    Mac Aodha, Oisin
    Brostow, Gabriel J.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6602 - 6611
  • [9] 3D Packing for Self-Supervised Monocular Depth Estimation
    Guizilini, Vitor
    Ambrus, Rares
    Pillai, Sudeep
    Raventos, Allan
    Gaidon, Adrien
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2482 - 2491
  • [10] Helmberger M., 2021, HILTI SLAM CHALLENGE