CAID prediction portal: a comprehensive service for predicting intrinsic disorder and binding regions in proteins

被引:26
作者
Del Conte, Alessio [1 ]
Bouhraoua, Adel [1 ]
Mehdiabadi, Mahta [1 ]
Clementel, Damiano [1 ]
Monzon, Alexander Miguel [2 ]
CAID Predictors, Damiano [1 ]
Tosatto, Silvio C. E. [1 ]
Piovesan, Damiano [1 ]
机构
[1] Univ Padua, Dept Biomed Sci, Via Ugo Bassi 58b, I-35121 Padua, Italy
[2] Univ Padua, Dept Informat Engn, Via Giovanni Gradenigo 6-B, I-35131 Padua, Italy
关键词
ACCURACY; CHAIN;
D O I
10.1093/nar/gkad430
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intrinsic disorder (ID) in proteins is well-established in structural biology, with increasing evidence for its involvement in essential biological processes. As measuring dynamic ID behavior experimentally on a large scale remains difficult, scores of published ID predictors have tried to fill this gap. Unfortunately, their heterogeneity makes it difficult to compare performance, confounding biologists wanting to make an informed choice. To address this issue, the Critical Assessment of protein Intrinsic Disorder (CAID) benchmarks predictors for ID and binding regions as a community blind-test in a standardized computing environment. Here we present the CAID Prediction Portal, a web server executing all CAID methods on user-defined sequences. The server generates standardized output and facilitates comparison between methods, producing a consensus prediction highlighting high-confidence ID regions. The website contains extensive documentation explaining the meaning of different CAID statistics and providing a brief description of all methods. Predictor output is visualized in an interactive feature viewer and made available for download in a single table, with the option to recover previous sessions via a private dashboard. The CAID Prediction Portal is a valuable resource for researchers interested in studying ID in proteins. The server is available at the URL: .
引用
收藏
页码:W62 / W69
页数:8
相关论文
共 49 条
[1]   UniProt: the universal protein knowledgebase in 2021 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Agivetova, Rahat ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Coetzee, Ray ;
Cukura, Austra ;
Da Silva, Alan ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lock, Antonia ;
Lopez, Rodrigo ;
Luciani, Aurelien ;
Luo, Jie ;
Lussi, Yvonne ;
Mac-Dougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Oliveira, Carla Susana ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Rice, Daniel ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sampson, Joseph .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D480-D489
[2]   The InterPro protein families and domains database: 20 years on [J].
Blum, Matthias ;
Chang, Hsin-Yu ;
Chuguransky, Sara ;
Grego, Tiago ;
Kandasaamy, Swaathi ;
Mitchell, Alex ;
Nuka, Gift ;
Paysan-Lafosse, Typhaine ;
Qureshi, Matloob ;
Raj, Shriya ;
Richardson, Lorna ;
Salazar, Gustavo A. ;
Williams, Lowri ;
Bork, Peer ;
Bridge, Alan ;
Gough, Julian ;
Haft, Daniel H. ;
Letunic, Ivica ;
Marchler-Bauer, Aron ;
Mi, Huaiyu ;
Natale, Darren A. ;
Necci, Marco ;
Orengo, Christine A. ;
Pandurangan, Arun P. ;
Rivoire, Catherine ;
Sigrist, Christian J. A. ;
Sillitoe, Ian ;
Thanki, Narmada ;
Thomas, Paul D. ;
Tosatto, Silvio C. E. ;
Wu, Cathy H. ;
Bateman, Alex ;
Finn, Robert D. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D344-D354
[3]  
Capella-Gutierrez S., 2017, Lessons Learned: Recommendations for Establishing Critical Periodic Scientific Benchmarking, DOI [10.1101/181677, DOI 10.1101/181677]
[4]   PreDisorder: ab initio sequence-based prediction of protein disordered regions [J].
Deng, Xin ;
Eickholt, Jesse ;
Cheng, Jianlin .
BMC BIOINFORMATICS, 2009, 10
[5]   Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure [J].
Emenecker, Ryan J. ;
Griffith, Daniel ;
Holehouse, Alex S. .
BIOPHYSICAL JOURNAL, 2021, 120 (20) :4312-4319
[6]   IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation [J].
Erdos, Gabor ;
Pajkos, Matyas ;
Dosztanyi, Zsuzsanna .
NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) :W297-W303
[7]   FoldUnfold: web server for the prediction of disordered regions in protein chain [J].
Galzitskaya, Oxana V. ;
Garbuzynskiy, Sergiy O. ;
Lobanov, Michail Yu. .
BIOINFORMATICS, 2006, 22 (23) :2948-2949
[8]   SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning [J].
Hanson, Jack ;
Paliwal, Kuldip K. ;
Litfin, Thomas ;
Zhou, Yaoqi .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2019, 17 (06) :645-656
[9]   Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures [J].
Hanson, Jack ;
Paliwal, Kuldip ;
Zhou, Yaoqi .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (11) :2369-2376
[10]   Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks [J].
Hanson, Jack ;
Yang, Yuedong ;
Paliwal, Kuldip ;
Zhou, Yaoqi .
BIOINFORMATICS, 2017, 33 (05) :685-692