Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries

被引:22
|
作者
Lu, Bin [1 ]
Lin, Chengjun [1 ]
Xiong, Haiji [1 ]
Zhang, Chi [2 ]
Fang, Lin [1 ]
Sun, Jiazhou [1 ]
Hu, Ziheng [1 ]
Wu, Yalong [1 ]
Fan, Xiaohong [1 ]
Li, Guifang [1 ]
Fu, Jile [2 ]
Deng, Dingrong [1 ]
Wu, Qihui [1 ]
机构
[1] Jimei Univ, Coll Marine Equipment & Mech Engn, Xiamen Key Lab Marine Corros & Smart Protect Mat, Xiamen 361021, Peoples R China
[2] Xiamen Univ Malaysia, Sch Energy & Chem Engn, Sepang 43900, Malaysia
来源
MOLECULES | 2023年 / 28卷 / 10期
基金
中国国家自然科学基金;
关键词
hard carbon; sodium-ion battery; biomass; atom doped; HIGH-PERFORMANCE SODIUM; ANODE MATERIAL; LITHIUM; INSERTION; NANOFIBERS; CONVERSION; STEM;
D O I
10.3390/molecules28104027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the development of high-performance electrode materials, sodium-ion batteries have been extensively studied and could potentially be applied in various fields to replace the lithium-ion cells, owing to the low cost and natural abundance. As the key anode materials of sodium-ion batteries, hard carbons still face problems, such as poor cycling performance and low initial Coulombic efficiency. Owning to the low synthesis cost and the natural presence of heteroatoms of biomasses, biomasses have positive implications for synthesizing the hard carbons for sodium-ion batteries. This minireview mainly explains the research progress of biomasses used as the precursors to prepare the hard-carbon materials. The storage mechanism of hard carbons, comparisons of the structural properties of hard carbons prepared from different biomasses, and the influence of the preparation conditions on the electrochemical properties of hard carbons are introduced. In addition, the effect of doping atoms is also summarized to provide an in-depth understanding and guidance for the design of high-performance hard carbons for sodium-ion batteries.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Microtubular Hard Carbon Derived From Willow Catkins as an Anode Material With Enhanced Performance for Sodium-Ion Batteries
    Teng, Yongqiang
    Mo, Maosong
    Li, Yuan
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (04)
  • [22] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [23] Hard Carbon Derived from Straw as Anode Materials for Sodium-ion Batteries
    Zhang, Hua-zhi
    Chen, Chao
    Xu, Hui
    Yang, Li-wen
    Chen, Jian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [24] Ultrafast synthesis of hard carbon anodes for sodium-ion batteries
    Zhen, Yichao
    Chen, Yang
    Li, Feng
    Guo, Zhenyu
    Hong, Zhensheng
    Titirici, Maria-Magdalena
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (42)
  • [25] N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries
    Wang, Yong
    Li, Yong
    Mao, Samuel S.
    Ye, Daixin
    Liu, Wen
    Guo, Rui
    Feng, Zhenhe
    Kong, Jilie
    Xie, Jingying
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (03): : 717 - 722
  • [26] Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
    Rios, Carolina del Mar Saavedra
    Simone, Virginie
    Simonin, Loic
    Martinet, Sebastien
    Dupont, Capucine
    BIOMASS & BIOENERGY, 2018, 117 : 32 - 37
  • [27] Bridging Microstructure and Sodium-Ion Storage Mechanism in Hard Carbon for Sodium Ion Batteries
    Zeng, Yuejing
    Yang, Jin
    Yang, Huiya
    Yang, Yang
    Zhao, Jinbao
    ACS ENERGY LETTERS, 2024, 9 (03): : 1184 - 1191
  • [28] Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin
    Meng, Qingwei
    Chen, Binyi
    Jian, Wenbin
    Zhang, Xiaoshan
    Sun, Shirong
    Wang, Tiejun
    Zhang, Wenli
    JOURNAL OF POWER SOURCES, 2023, 581
  • [29] Comparison and optimization of biomass-derived hard carbon as anode materials for sodium-ion batteries
    Kuai, J.
    Xie, J.
    Wang, J. D.
    Chen, J. Y.
    Liu, F.
    Xu, X. W.
    Tu, J.
    Cheng, J. P.
    CHEMICAL PHYSICS LETTERS, 2024, 842
  • [30] Self-supporting, low-tortuosity hard carbon for superior sodium-ion batteries
    Xu, Lai-Qiang
    Feng, Bing
    Su, Yu
    Hu, Qian
    Liu, Gong-Gang
    Bai, Yuan-Juan
    Chang, Shan-Shan
    Wang, Xiao-Dong
    Rodrigue, Denis
    Hu, Jin-Bo
    Ji, Xiao-Bo
    Wu, Yi-Qiang
    RARE METALS, 2024, 43 (12) : 6362 - 6372