Improving Automatic Music Genre Classification Systems by Using Descriptive Statistical Features of Audio Signals

被引:0
|
作者
Perera, Ravindu [1 ]
Wickramasinghe, Manjusri [1 ]
Jayaratne, Lakshman [1 ]
机构
[1] Univ Colombo, Sch Comp, 35 Reid Ave, Colombo 07, Sri Lanka
来源
ARTIFICIAL INTELLIGENCE IN MUSIC, SOUND, ART AND DESIGN, EVOMUSART 2023 | 2023年 / 13988卷
关键词
Music Information Retrieval; Music Genre Identification; Music Genre Classification; Descriptive Statistical Features; Digital Signal Processing;
D O I
10.1007/978-3-031-29956-8_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic music genre classification systems are vital nowadays because the traditional music genre classification process is mostly implemented without following a universal taxonomy and the traditional process for audio indexing is prone to error. Various techniques to implement an automatic music genre classification system can be found in the literature but the accuracy and efficiency of those systems are insufficient to make them useful for practical scenarios such as identifying songs by the music genre in radio broadcast monitoring systems. The main contribution of this research is to increase the accuracy and efficiency of current automatic music genre classification systems with a comprehensive analysis of correlations between the descriptive statistical features of audio signals and the music genres of songs. A greedy approach for music genre identification is also introduced to improve the accuracy and efficiency of music genre classification systems and to identify the music genre of complex songs that contain multiple music genres. The approach, proposed in this paper, reported 87.3% average accuracy for music genre classification on the GTZAN dataset over 10 music genres.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 50 条
  • [1] Exploring Textural Features for Automatic Music Genre Classification
    Agera, Nelson
    Chapaneri, Santosh
    Jayaswal, Deepak
    1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 822 - 826
  • [2] Music genre classification using temporal domain features
    Shiu, Y
    Kuo, CCJ
    INTERNET MULTIMEDIA MANAGEMENT SYSTEMS V, 2004, 5601 : 79 - 90
  • [3] Automatic Music Genre Classification Using Hybrid Genetic Algorithms
    Karkavitsas, George V.
    Tsihrintzis, George A.
    INTELLIGENT INTERACTIVE MULTIMEDIA SYSTEMS AND SERVICES (IIMSS 2011), 2011, 11 : 323 - 335
  • [4] Brain and Music: Music Genre Classification using Brain Signals
    Ghaemmaghami, Pouya
    Sebe, Nicu
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 708 - 712
  • [5] Music genre classification of MPEG AAC audio data
    Kobayakawa, Michihiro
    Hoshi, Mamoru
    Yuzawa, Koichiro
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2014, : 347 - 352
  • [6] Texture selection for automatic music genre classification
    Foleis, Juliano Henrique
    Tavares, Tiago Fernandes
    APPLIED SOFT COMPUTING, 2020, 89
  • [7] Music Genre Classification Using Frequency Domain Features
    Sarkar, Rajib
    Biswas, Nimagna
    Chakraborty, Saurajit
    PROCEEDINGS OF 2018 FIFTH INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2018,
  • [8] Automatic Music Genre Classification using Convolution Neural Network
    Vishnupriya, S.
    Meenakshi, K.
    2018 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2018,
  • [9] Automatic Music Genre Classification Based on CRNN
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Nguyen, Duc-Man
    Kuo, Che-Nan
    ENGINEERING LETTERS, 2021, 29 (01) : 312 - 316
  • [10] Music Genre Classification via Joint Sparse Low-Rank Representation of Audio Features
    Panagakis, Yannis
    Kotropoulos, Constantine L.
    Arce, Gonzalo R.
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (12) : 1905 - 1917