Design, synthesis, and characterization of non-hemolytic antimicrobial peptides related to human cathelicidin LL-37

被引:5
|
作者
Krishnamoorthy, Rajavenkatesh [1 ,2 ]
Adhikari, Priyanka [3 ]
Anaikutti, Parthiban [3 ]
机构
[1] CSIR CLRI, Organ & Bioorgan Chem Lab, Chennai 600020, Tamil Nadu, India
[2] Sethu Inst Technol, Dept Chem, Virudunagar 626115, Tamil Nadu, India
[3] Natl Inst Pharmaceut Educ & Res, Ctr GMP Extract Facil, Dept Biotechnol, Gauhati 781101, Assam, India
关键词
HOST-DEFENSE PEPTIDES; MECHANISM; MODEL; BIOMEMBRANES; SPECTROSCOPY; MEMBRANES; BILAYERS; INSIGHT; BINDING;
D O I
10.1039/d3ra02473c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We designed and synthesised the N-terminally labeled cationic and hydrophobic peptides, i.e., FFKKSKEKIGKEFKKIVQKI (P1) and FRRSRERIGREFRRIVQRI (P2) related to the human cathelicidin LL-37 peptide. The integrity and molecular weight of the peptides were confirmed by mass spectrometry. The purity and homogeneity of peptides P1 and P2 were determined by comparing LCMS or analytical HPLC chromatograms. The circular dichroism spectroscopy reveals the conformational transitions upon interaction with membranes. Predictably, peptides P1 and P2 showed a random coil structure in the buffer and formed alpha-helix secondary structure in TFE and SDS micelles. This assessment was further confirmed by 2D NMR spectroscopic methods. The analytical HPLC binding assay measurements revealed that peptides P1 and P2 display preferential interactions with the anionic lipid bilayer (POPC:POPG) moderately than zwitterionic (POPC). The efficacies of the peptides were tested against Gram-positive and Gram-negative bacteria. It is imperative to note here that the arginine-rich P2 exerted higher activity against all the test organisms as compared with that shown by the lysine-rich peptide P1. To test the toxicity of these peptides, a hemolytic assay was performed. P1 and P2 showed very little to no toxicity for a hemolytic assay, which is significant for P1 and P2 to be used as potential therapeutic agents in practical applications. Both peptides P1 and P2 were non-hemolytic and appeared to be more promising as they demonstrated wide-spectrum antimicrobial activity.
引用
收藏
页码:15594 / 15605
页数:12
相关论文
共 50 条
  • [1] Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37
    Wang, Guangshun
    Narayana, Jayaram Lakshmaiah
    Mishra, Biswajit
    Zhang, Yingxia
    Wang, Fangyu
    Wang, Chunfeng
    Zarena, D.
    Lushnikova, Tamara
    Wang, Xiuqing
    ANTIMICROBIAL PEPTIDES: BASICS FOR CLINICAL APPLICATION, 2019, 1117 : 215 - 240
  • [2] LL-37, the only human member of the cathelicidin family of antimicrobial peptides
    Durr, Ulrich H. N.
    Sudheendra, U. S.
    Ramamoorthy, Ayyalusamy
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (09): : 1408 - 1425
  • [3] Antimicrobial human cathelicidin, LL-37, in breast milk
    Yoshio, H.
    Yamada, M.
    Yoshida, M.
    Takeuchi, A.
    Endo, S.
    Kageyama, M.
    Nakamura, M.
    Yamauchi, Y.
    Agerberth, B.
    ACTA PAEDIATRICA, 2007, 96 : 220 - 221
  • [4] In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37
    Sigurdardottir, Thorgerdur
    Andersson, Pia
    Davoudi, Mina
    Malmsten, Martin
    Schmidtchen, Artur
    Bodelsson, Mikael
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2006, 50 (09) : 2983 - 2989
  • [5] Cathelicidin LL-37: A Multitask Antimicrobial Peptide
    Bucki, Robert
    Leszczynska, Katarzyna
    Namiot, Andrzej
    Sokolowski, Wojciech
    ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2010, 58 (01) : 15 - 25
  • [6] Cathelicidin LL-37: A Multitask Antimicrobial Peptide
    Robert Bucki
    Katarzyna Leszczyńska
    Andrzej Namiot
    Wojciech Sokołowski
    Archivum Immunologiae et Therapiae Experimentalis, 2010, 58 : 15 - 25
  • [7] Resistome of Staphylococcus aureus in Response to Human Cathelicidin LL-37 and Its Engineered Antimicrobial Peptides
    Golla, Radha M.
    Mishra, Biswajit
    Dang, Xiangli
    Narayana, Jayaram Lakshmaiah
    Li, Amy
    Xu, Libin
    Wang, Guangshun
    ACS INFECTIOUS DISEASES, 2020, 6 (07): : 1866 - 1881
  • [8] Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites
    Rico-Mata, Rosa
    De Leon-Rodriguez, Luis M.
    Avila, Eva E.
    EXPERIMENTAL PARASITOLOGY, 2013, 133 (03) : 300 - 306
  • [9] LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity
    Adam Fabisiak
    Natalia Murawska
    Jakub Fichna
    Pharmacological Reports, 2016, 68 : 802 - 808
  • [10] LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity
    Fabisiak, Adam
    Murawska, Natalia
    Fichna, Jakub
    PHARMACOLOGICAL REPORTS, 2016, 68 (04) : 802 - 808