Lov?sz-Schrijver PSD-operator and the stable set polytope of claw-free graphs

被引:2
作者
Bianchi, Silvia M. [1 ]
Escalante, Mariana S. [2 ]
Nasini, Graciela L. [2 ]
Wagler, Annegret K. [3 ]
机构
[1] Univ Nacl Rosario, FCEIA, Rosario, Argentina
[2] Univ Nacl Rosario, CONICET & FCEIA, Rosario, Argentina
[3] Univ Clermont Auvergne, LIMOS UMR CNRS 6158, Clermont Ferrand, France
关键词
Semidefinite relaxation; Stable set problem; Claw-free graphs; IMPERFECTION RATIO; RANK FACETS; ALGORITHM;
D O I
10.1016/j.dam.2023.01.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovasz-Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+ -Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 86
页数:17
相关论文
共 47 条
  • [1] Berge C., 1963, Six Papers on Graph Theory, P1
  • [2] Lovasz-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
    Bianchi, S.
    Escalante, M.
    Nasini, G.
    Tuncel, L.
    [J]. MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 201 - 223
  • [3] Bianchi S., 2016, ANN LATIN IBEROAMERI
  • [4] Bianchi S., 2016, BORDEAUX GRAPH WORKS, P29
  • [5] Bianchi S. M., 2011, ELECT NOTES DISCRETE, V37, P393
  • [6] Lovasz-Schrijver PSD-Operator on Claw-Free Graphs
    Bianchi, Silvia
    Escalante, Mariana
    Nasini, Graciela
    Wagler, Annegret
    [J]. COMBINATORIAL OPTIMIZATION, ISCO 2016, 2016, 9849 : 59 - 70
  • [7] Bianchi SM., 2013, Electron. Notes Discret. Math, V44, P339, DOI [10.1016/j.endm.2013.10.053, DOI 10.1016/J.ENDM.2013.10.053]
  • [8] Claw-free graphs. V. Global structure
    Chudnovsky, Maria
    Seymour, Paul
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) : 1373 - 1410
  • [9] The strong perfect graph theorem
    Chudnovsky, Maria
    Robertson, Neil
    Seymour, Paul
    Thomas, Robin
    [J]. ANNALS OF MATHEMATICS, 2006, 164 (01) : 51 - 229
  • [10] CERTAIN POLYTOPES ASSOCIATED WITH GRAPHS
    CHVATAL, V
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) : 138 - 154