Functional, pathogenic, and pharmacological roles of protein folding intermediates

被引:5
|
作者
Biasini, Emiliano [1 ]
Faccioli, Pietro [2 ,3 ,4 ]
机构
[1] Univ Trento, Dept Cellular Computat & Integrat Biol CIBIO, Trento, Italy
[2] Univ Trento, Dept Phys, Trento, Italy
[3] Italian Inst Nucl Phys, Trento Inst Fundamental Phys & Applicat, Trento, Italy
[4] Univ Trento, Phys Dept, Trento, Italy
关键词
drug discovery; misfolding; molecular simulations; protein folding; protein homeostasis; ALL-ATOM SIMULATIONS; PRION; TRANSITION; INHIBITOR; MUTATIONS; MECHANISM; INSIGHT; DISEASE;
D O I
10.1002/prot.26479
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein expression and function in eukaryotic cells are tightly harmonized processes modulated by the combination of different layers of regulation, including transcription, processing, stability, and translation of messenger RNA, as well as assembly, maturation, sorting, recycling, and degradation of polypeptides. Integrating all these pathways and the protein quality control machinery, deputed to avoid the production and accumulation of aberrantly folded proteins, determines protein homeostasis. Over the last decade, the combined development of accurate time-resolved experimental techniques and efficient computer simulations has opened the possibility of investigating biological mechanisms at atomic resolution with physics-based models. A meaningful example is the reconstruction of protein folding pathways at atomic resolution, which has enabled the characterization of the folding kinetics of biologically relevant globular proteins consisting of a few hundred amino acids. Combining these innovative computational technologies with rigorous experimental approaches reveals the existence of non-native metastable states transiently appearing along the folding process of such proteins. Here, we review the primary evidence indicating that these protein folding intermediates could play roles in disparate biological processes, from the posttranslational regulation of protein expression to disease-relevant protein misfolding mechanisms. Finally, we discuss how the information encoded into protein folding pathways could be exploited to design an entirely new generation of pharmacological agents capable of promoting the selective degradation of protein targets.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Are Protein Folding Intermediates the Evolutionary Consequence of Functional Constraints?
    Naganathan, Athi N.
    Sanchez-Ruiz, Jose M.
    Munshi, Sneha
    Suresh, Swaathiratna
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (04) : 1323 - 1333
  • [2] Protein folding: Nucleation and compact intermediates
    Ptitsyn, OB
    BIOCHEMISTRY-MOSCOW, 1998, 63 (04) : 367 - 373
  • [3] Identification and characterization of protein folding intermediates
    Gianni, Stefano
    Ivarsson, Ylva
    Jemth, Per
    Brunori, Maurizio
    Travaglini-Allocatelli, Carlo
    BIOPHYSICAL CHEMISTRY, 2007, 128 (2-3) : 105 - 113
  • [4] MOLTEN GLOBULE INTERMEDIATES AND PROTEIN FOLDING
    CHRISTENSEN, H
    PAIN, RH
    EUROPEAN BIOPHYSICS JOURNAL, 1991, 19 (05) : 221 - 229
  • [5] KINETIC AND EQUILIBRIUM INTERMEDIATES IN PROTEIN-FOLDING
    PTITSYN, OB
    PROTEIN ENGINEERING, 1994, 7 (05): : 593 - 596
  • [6] Optimal strategy for stabilizing protein folding intermediates
    Wang, Mengshou
    Peng, Liangrong
    Jia, Baoguo
    Hong, Liu
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (16)
  • [7] Reshaping the Protein Folding Pathway by Osmolyte via its Effects on the Folding Intermediates
    Sharma, Gurumayum Suraj
    Dar, Tanveer Ali
    Singh, Laishram Rajendrakumar
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2015, 16 (06) : 513 - 520
  • [8] The how's and why's of protein folding intermediates
    Tsytlonok, Maksym
    Itzhaki, Laura S.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2013, 531 (1-2) : 14 - 23
  • [9] NMR as a tool to identify and characterize protein folding intermediates
    Neira, Jose L.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2013, 531 (1-2) : 90 - 99
  • [10] Mechanisms and Consequences of Protein Aggregation: The Role of Folding Intermediates
    Seshadri, Sangita
    Oberg, Keith A.
    Uversky, Vladimir N.
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2009, 10 (05) : 456 - 463