On the sum of distance Laplacian eigenvalues of graphs

被引:9
|
作者
Pirzada, Shariefuddin [1 ]
Khan, Saleem [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
来源
TAMKANG JOURNAL OF MATHEMATICS | 2023年 / 54卷 / 01期
关键词
Distance matrix; distance Laplacian matrix; distance Laplacian eigenvalues; diameter; Wiener index;
D O I
10.5556/j.tkjm.54.2023.4120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph with n vertices, m edges and having diameter d. The distance Laplacian matrix DL is defined as DL = Diag(Tr) - D, where Diag(Tr) is the diagonal matrix of vertex transmissions and D is the distance matrix of G. The distance Laplacian eigenvalues of G are the eigenvalues of DL and are denoted by 61, 61, ... , 6n. In this paper, we obtain (a) the upper bounds for the sum of k largest and (b) the lower bounds for the sum of k smallest non-zero, distance Laplacian eigenvalues of G in terms of order n, diameter d and Wiener index W of G. We characterize the extremal cases of these bounds. Also, we obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of G. Finally, we obtain a sharp lower bound for the sum of the beta th powers of the distance Laplacian eigenvalues, where beta =6 0, 1.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [21] On the Distance and Distance Signless Laplacian Spectral Radii of Tricyclic Graphs
    Zhongxun Zhu
    Xin Zou
    Yunchao Hong
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2587 - 2604
  • [22] On the Distance and Distance Signless Laplacian Spectral Radii of Tricyclic Graphs
    Zhu, Zhongxun
    Zou, Xin
    Hong, Yunchao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2587 - 2604
  • [23] GRAPHS THAT ARE COSPECTRAL FOR THE DISTANCE LAPLACIAN
    Brimkov, Boris
    Duna, Ken
    Hogben, Leslie
    Lorenzen, Kate
    Reinhart, Carolyn
    Song, Sung-Yell
    Yarrow, Mark
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 334 - 351
  • [24] On the distance Laplacian spectra of graphs
    Nath, Milan
    Paul, Somnath
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 460 : 97 - 110
  • [25] Upper bounds on the (signless) Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    Shan, Haiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 334 - 341
  • [26] ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS
    Pirzada, S.
    Ganie, H. A.
    Alghamdi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 407 - 417
  • [27] Multiplicities of distance Laplacian eigenvalues and forbidden subgraphs
    Fernandes, Rosario
    de Freitas, Maria Aguieiras A.
    da Silva, Celso M., Jr.
    Del-Vecchio, Renata R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 81 - 93
  • [28] SOME PROPERTIES OF THE DISTANCE LAPLACIAN EIGENVALUES OF A GRAPH
    Aouchiche, Mustapha
    Hansen, Pierre
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) : 751 - 761
  • [29] Some properties of the distance Laplacian eigenvalues of a graph
    Mustapha Aouchiche
    Pierre Hansen
    Czechoslovak Mathematical Journal, 2014, 64 : 751 - 761
  • [30] On the eccentric distance sum of graphs
    Ilic, Aleksandar
    Yu, Guihai
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 590 - 600