Simple process for lithium extraction from α-spodumene with potassium fluoride: Modeling and optimization

被引:9
作者
Rosales, Gustavo D. [1 ]
Resentera, Alexander C. [1 ]
Braga, Paulo F. A. [2 ]
Esquivel, Marcelo R. [3 ,4 ]
Rodriguez, Mario H. [1 ]
机构
[1] Univ Nacl Cuyo, UNCUYO, CONICET, Inst Interdisciplinario Ciencias Basicas ICB,Fac C, Padre Contreras 1300, RA-5500 Mendoza, Argentina
[2] Ctr Mineral Technol CETEM, Ave Pedro Calmon 900, BR-21941908 Rio De Janeiro, RJ, Brazil
[3] CNEA, CONICET, Ctr Atom Bariloche, Av Bustillo Km 9-5, RA-8400 San Carlos De Bariloche, Argentina
[4] Univ Nacl Comahue UNCo, Quintral 1250, RA-8400 San Carlos De Bariloche, Argentina
关键词
Lithium; Extraction; Spodumene; KF; Fluorination; Response surface methodology; BETA-SPODUMENE; CHLORINATION;
D O I
10.1016/j.cherd.2023.01.042
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
New developments in energy storage technologies have positioned lithium as a critical energy element worldwide. For this reason, it is relevant to investigate new processes that exploit Li resources comprehensively and efficiently. This work describes a simple methodology for Li extraction by solid-solid reaction between alpha-spodumene and KF and subsequent leaching. The operational parameters investigated were: temperature, calci-nation time, and amount of fluorinating agent. The process efficiency was analyzed through Design of Experiments (DOE) and Artificial Neural Networks (ANN) to obtain a predictive model of the system. Optimal Li extraction of 94% was achieved at 779 degrees C, 43 min, with a KF/spodumene ratio of 0.56 w/w.(c) 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 23 条
[1]   Lithium extraction from β-spodumene through chlorination with chlorine gas [J].
Barbosa, L. I. ;
Valente, G. ;
Orosco, R. P. ;
Gonzalez, J. A. .
MINERALS ENGINEERING, 2014, 56 :29-34
[2]   Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride [J].
Barbosa, Lucia I. ;
Gonzalez, Jorge A. ;
del Carmen Ruiz, Maria .
THERMOCHIMICA ACTA, 2015, 605 :63-67
[3]   Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process [J].
Chen, Ya ;
Tian, Qianqiu ;
Chen, Baizhen ;
Shi, Xichang ;
Liao, Ting .
HYDROMETALLURGY, 2011, 109 (1-2) :43-46
[4]   Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources [J].
Choubey, Pankaj K. ;
Kim, Min-seuk ;
Srivastava, Rajiv R. ;
Lee, Jae-chun ;
Lee, Jin-Young .
MINERALS ENGINEERING, 2016, 89 :119-137
[5]   SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions [J].
Giordano, Pablo C. ;
Goicoechea, Hector C. ;
Olivieri, Alejandro C. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 171 :198-206
[6]   Investigation of Enhanced Leaching of Lithium from α-Spodumene Using Hydrofluoric and Sulfuric Acid [J].
Guo, Hui ;
Kuang, Ge ;
Wang, Haidong ;
Yu, Haizhao ;
Zhao, Xiaokang .
MINERALS, 2017, 7 (11)
[7]  
Habashi F., 1997, HDB EXTRACTIVE METAL
[8]  
HSC, 2006, OUT HSC CHEM
[9]  
Jaskula B, 2021, MINERAL COMMODITY SU
[10]  
JASKULA B.W., 2018, 2016 Minerals Yearbook: Lithium (advance release)