UncertainSCI: Uncertainty quantification for computational models in biomedicine and bioengineering

被引:13
作者
Narayan, Akil [1 ,3 ]
Liu, Zexin [1 ,3 ]
Bergquist, Jake A. [1 ,2 ]
Charlebois, Chantel [1 ,2 ]
Rampersad, Sumientra [4 ,5 ]
Rupp, Lindsay [1 ,2 ]
Brooks, Dana [5 ]
White, Dan [1 ,2 ]
Tate, Jess [1 ,2 ]
MacLeod, Rob S. [1 ,2 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, 72 Cent Campus Dr, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Biomed Engn, 72 Cent Campus Dr, Salt Lake City, UT 84112 USA
[3] Univ Utah, Dept Math, 72 Cent Campus Dr, Salt Lake City, UT 84112 USA
[4] Univ Massachusetts Boston, Dept Phys, Boston, MA USA
[5] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA USA
基金
美国国家卫生研究院;
关键词
Biomedical simulations; Uncertainty quantification; Open-source software; DIRECT-CURRENT STIMULATION; POLYNOMIAL CHAOS; POINTS; FEKETE;
D O I
10.1016/j.compbiomed.2022.106407
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Computational biomedical simulations frequently contain parameters that model physical fea -tures, material coefficients, and physiological effects, whose values are typically assumed known a priori. Understanding the effect of variability in those assumed values is currently a topic of great interest. A general-purpose software tool that quantifies how variation in these parameters affects model outputs is not broadly available in biomedicine. For this reason, we developed the 'UncertainSCI' uncertainty quantification software suite to facilitate analysis of uncertainty due to parametric variability.Methods: We developed and distributed a new open-source Python-based software tool, UncertainSCI, which employs advanced parameter sampling techniques to build polynomial chaos (PC) emulators that can be used to predict model outputs for general parameter values. Uncertainty of model outputs is studied by modeling parameters as random variables, and model output statistics and sensitivities are then easily computed from the emulator. Our approaches utilize modern, near-optimal techniques for sampling and PC construction based on weighted Fekete points constructed by subsampling from a suitably randomized candidate set.Results: Concentrating on two test cases-modeling bioelectric potentials in the heart and electric stimulation in the brain-we illustrate the use of UncertainSCI to estimate variability, statistics, and sensitivities associated with multiple parameters in these models.Conclusion: UncertainSCI is a powerful yet lightweight tool enabling sophisticated probing of parametric variability and uncertainty in biomedical simulations. Its non-intrusive pipeline allows users to leverage existing software libraries and suites to accurately ascertain parametric uncertainty in a variety of applications.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Adams B.M., 2021, SAND202012495 SAND N
[2]   A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models [J].
Bayer, J. D. ;
Blake, R. C. ;
Plank, G. ;
Trayanova, N. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (10) :2243-2254
[3]  
Bergquist JakeA., 2021, 2021 Computing in Cardiology (CinC), V48, P1
[4]   COMPUTING MULTIVARIATE FEKETE AND LEJA POINTS BY NUMERICAL LINEAR ALGEBRA [J].
Bos, L. ;
De Marchi, S. ;
Sommariva, A. ;
Vianello, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) :1984-1999
[5]   Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points [J].
Burk, Kyle M. ;
Narayan, Akil ;
Orr, Joseph A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2020, 36 (11)
[6]  
Burkardt John, 2009, 47 AIAA AEROSPACE SC
[7]  
Burton B., 2011, Proceedings of the IEEE Engineering in Medicine and Biology Society 33rd Annual International Conference, P1
[8]   A Framework for Image-Based Modeling of Acute Myocardial Ischemia Using Intramurally Recorded Extracellular Potentials [J].
Burton, Brett M. ;
Aras, Kedar K. ;
Good, Wilson W. ;
Tate, Jess D. ;
Zenger, Brian ;
MacLeod, Rob S. .
ANNALS OF BIOMEDICAL ENGINEERING, 2018, 46 (09) :1325-1336
[9]   Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation [J].
Charlebois, Chantel M. ;
Caldwell, David J. ;
Rampersad, Sumientra M. ;
Janson, Andrew P. ;
Ojemann, Jeffrey G. ;
Brooks, Dana H. ;
MacLeod, Rob S. ;
Butson, Christopher R. ;
Dorval, Alan D. .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[10]  
Cohen A., 2017, The SMAI Journal of computational mathematics, V3, P181, DOI DOI 10.5802/SMAI-JCM.24