An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range

被引:70
作者
Jiang, Bo [1 ,2 ]
Zhu, Yuli [2 ,3 ]
Zhu, Jiangong [2 ,3 ]
Wei, Xuezhe [2 ,3 ]
Dai, Haifeng [2 ,3 ]
机构
[1] Tongji Univ, Postdoctoral Stn Mech Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[3] Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Capacity estimation; Relaxation voltage; Data-driven; State of charge; OF-HEALTH ESTIMATION; INCREMENTAL CAPACITY; MODEL; REGRESSION;
D O I
10.1016/j.energy.2022.125802
中图分类号
O414.1 [热力学];
学科分类号
摘要
Capacity estimation is essential for battery health management during the whole lifecycle. The data-driven technique has shown advanced performance in battery capacity estimation. However, the strict limitations on application scenarios and the long duration for feature determination are still the bottlenecks of existing data -driven estimation methods. This study proposes a data-driven capacity estimation method only using 10-min relaxation voltage data, which is adaptable to the high state of charge (SOC) range. The experiments of com-mercial batteries are designed to investigate the coupling relationship between relaxation voltage, battery aging, and charging cut-off SOC. Further, a novel dual Gaussian process regression (GPR) framework is put forward, in which one GPR is responsible for the battery open-circuit voltage (OCV) estimation using the sequential relax-ation voltage feature, and another GPR estimates battery capacity with the corresponding relaxation voltage feature and the estimated OCV. Quantitative experimental results demonstrate that the proposed approach can achieve accurate OCV estimation with extremely sparse voltage data. When SOC is larger than 90%, the capacity estimation achieves a mean absolute error of 2.493% over the battery lifecycle, showing a noticeable improvement over the traditional estimation method.
引用
收藏
页数:11
相关论文
共 59 条
[1]   State of health assessment for lithium batteries based on voltage-time relaxation measure [J].
Baghdadi, Issam ;
Briat, Olivier ;
Gyan, Philippe ;
Vinassa, Jean Michel .
ELECTROCHIMICA ACTA, 2016, 194 :461-472
[2]   State-of-Health Estimation of Lithium-Ion Batteries by Fusing an Open Circuit Voltage Model and Incremental Capacity Analysis [J].
Bian, Xiaolei ;
Wei, Zhongbao Gae ;
Li, Weihan ;
Pou, Josep ;
Sauer, Dirk Uwe ;
Liu, Longcheng .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (02) :2226-2236
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]   Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales [J].
Dai, Haifeng ;
Xu, Tianjiao ;
Zhu, Letao ;
Wei, Xuezhe ;
Sun, Zechang .
APPLIED ENERGY, 2016, 184 :119-131
[5]   Battery health estimation with degradation pattern recognition and transfer learning [J].
Deng, Zhongwei ;
Lin, Xianke ;
Cai, Jianwei ;
Hu, Xiaosong .
JOURNAL OF POWER SOURCES, 2022, 525
[6]   Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Li, Penghua ;
Lin, Xianke ;
Bian, Xiaolei .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (05) :5021-5031
[7]   General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Lin, Xianke ;
Xu, Le ;
Che, Yunhong ;
Hu, Lin .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) :1295-1306
[8]   A novel deep learning framework for state of health estimation of lithium-ion battery [J].
Fan, Yaxiang ;
Xiao, Fei ;
Li, Chaoran ;
Yang, Guorun ;
Tang, Xin .
JOURNAL OF ENERGY STORAGE, 2020, 32
[9]  
Fang Q, 2019, ENERGIES, V12
[10]   Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles [J].
Farmann, Alexander ;
Waag, Wladislaw ;
Marongiu, Andrea ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2015, 281 :114-130