The single-wavelength 561 nm laser based on reflective volume Bragg grating

被引:2
作者
Chang, Aolei [1 ,2 ]
Wu, Chunting [1 ]
Yao, Wenming [2 ]
Wang, Peng [2 ]
Chen, Jiansheng [2 ]
Tan, Huiming [2 ]
Tian, Yubing [2 ]
Wu, Xiaodong [2 ]
Gao, Jing [1 ,2 ]
机构
[1] Changchun Univ Sci & Technol, Sch Sci, Jilin Key Lab Solid Laser Technol & Applicat, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Jiangsu Key Lab Med Opt, Suzhou 215163, Peoples R China
基金
中国国家自然科学基金;
关键词
561 nm solid-state lasers; frequency doubling; reflective volume Bragg grating; CONTINUOUS-WAVE YELLOW; SPECTROSCOPY;
D O I
10.1002/mop.33335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents 561 nm single-wavelength laser by laser diode end-pumped Nd:YAG crystal. The reflective volume Bragg grating is used as the output coupling mirror to effectively select the center wavelength of 1123 nm. The single wavelength laser output at 561 nm is obtained by intracavity frequency doubling via LBO crystal cut in accordance with Type I phase matching condition. When the pump power is 4 W, the output power reaches 229.6 mW, and the power instability is less than 3% within 5 min. Experiments show that the reflective volume Bragg grating acts as both a frequency selection element and an output coupling mirror, which simplifies the resonator structure and improves the laser output power.
引用
收藏
页码:1255 / 1260
页数:6
相关论文
共 30 条
  • [1] Actively Q-switched tunable single-longitudinal-mode 2 μm Tm:YAP laser using a transversally chirped volume Bragg grating
    Berthome, Quentin
    Grisard, Arnaud
    Faure, Basile
    Souhaite, Gregoire
    Lallier, Eric
    Melkonian, Jean-Michel
    Godard, Antoine
    [J]. OPTICS EXPRESS, 2020, 28 (04) : 5013 - 5021
  • [2] Time-Resolved Fluorescence Spectroscopy Measures Clustering and Mobility of a G Protein-Coupled Receptor Opsin in Live Cell Membranes
    Comar, William D.
    Schubert, Sarah M.
    Jastrzebska, Beata
    Palczewski, Krzysztof
    Smith, Adam W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (23) : 8342 - 8349
  • [3] AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects
    D'Orlando, Angelina
    Bayle, Maxime
    Louarn, Guy
    Humbert, Bernard
    [J]. MATERIALS, 2019, 12 (09)
  • [4] High-power, continuous-wave optical parametric oscillator based on MgO:sPPLT crystal
    Deng, Lihua
    Yu, Yongji
    Chang, Aolei
    Chen, Jiansheng
    Wang, Peng
    Tan, Huiming
    Wu, Xiaodong
    Yao, Wenming
    Gao, Jing
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (08) : 2068 - 2073
  • [5] All-solid-state continuous-wave yellow laser at 561 nm under in-band pumping
    Gao, Jing
    Dai, Xianjin
    Zhang, Long
    Sun, Haixuan
    Wu, Xiaodong
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (01) : 95 - 98
  • [6] Yellow, lime and green emission selectable by BBO angle tuning in Q-switched Nd:YVO4 self-Raman laser
    Guo, Jin
    Zhu, Haiyong
    Chen, Simeng
    Xu, Xinrong
    Duan, Yanmin
    Xu, Changwen
    Tang, Dingyuan
    [J]. LASER PHYSICS LETTERS, 2018, 15 (07)
  • [7] Passively Q switched dual channel Tm:YLF laser by intracavity spectral beam combination with volume Bragg gratings
    Hale, Evan R.
    Divliansky, Ivan
    Glebov, Leonid
    [J]. OPTICS EXPRESS, 2018, 26 (13): : 16670 - 16678
  • [8] Continuous-wave and passively Q-switched 1.06 μm ceramic Nd:YAG laser
    He, Ying
    Ma, Yufei
    Li, Jiang
    Li, Xudong
    Yan, Renpeng
    Gao, Jing
    Yu, Xin
    Sun, Rui
    Pan, Yubai
    [J]. OPTICS AND LASER TECHNOLOGY, 2016, 81 : 46 - 49
  • [9] Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity
    Jacobsson, Bjorn
    Pasiskevicius, Valdas
    Laurell, Fredrik
    [J]. OPTICS EXPRESS, 2006, 14 (20) : 9284 - 9292
  • [10] Sub-nanosecond, single longitudinal mode laser based on a VBG-coupled EOQ Nd:YVO4 oscillator for remote sensing
    Jiang, Yewen
    Li, Peilin
    Fu, Xing
    Liu, Qiang
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (10) : 2541 - 2547