Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae)

被引:19
作者
Chase, Mark W. [1 ,2 ,3 ]
Samuel, Rosabelle [3 ]
Leitch, Andrew R. [4 ]
Guignard, Maite S. [1 ]
Conran, John G. [5 ,6 ]
Nollet, Felipe [7 ]
Fletcher, Paul [4 ]
Jakob, Aljaz [3 ]
Cauz-Santos, Luiz A. [3 ]
Vignolle, Gabriel [3 ]
Dodsworth, Steven [8 ]
Christenhusz, Maarten J. M. [2 ]
Buril, Maria Teresa [5 ,6 ]
Paun, Ovidiu [3 ]
机构
[1] Royal Bot Gardens, Richmond TW9 3DS, England
[2] Curtin Univ, Dept Environm & Agr, Perth, WA, Australia
[3] Univ Vienna, Dept Bot & Biodivers Res, Rennweg 14, A-1030 Vienna, Austria
[4] Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England
[5] Univ Adelaide, Sch Biol Sci, ACEBB, Adelaide, SA 5005, Australia
[6] Univ Adelaide, Sch Biol Sci, SGC, Adelaide, SA 5005, Australia
[7] Univ Fed Rural Pernambuco, Ctr Ciencias Biol, Dept Bot, Rua Manuel de Medeiros S-N, BR-52171900 Recife, PE, Brazil
[8] Univ Portsmouth, Sch Biol Sci, Portsmouth PO1 2DY, Hants, England
基金
奥地利科学基金会;
关键词
Allotetraploid evolution; Australian endemics; C-value; diploidization; dysploidy; epigenetics; model organism; Nicotiana benthamiana; Nicotiana sect; Suaveolentes; polyploidy; Solanaceae; WGD; TRANSPOSABLE ELEMENTS; PHYLOGENETIC TREES; FLOW-CYTOMETRY; EVOLUTION; ORIGIN; POLYPLOIDY; NUMBER; IMPACT; TOOL; TOMENTOSIFORMIS;
D O I
10.1093/aob/mcac006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. Methods We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. Key Results RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. Conclusions The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 119 条
[51]   Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants [J].
Hawkins, Jennifer S. ;
Proulx, Stephen R. ;
Rapp, Ryan A. ;
Wendel, Jonathan F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (42) :17811-17816
[52]   Phylogenomics resolves evolutionary relationships and provides insights into floral evolution in the tribe Shoreeae (Dipterocarpaceae) [J].
Heckenhauer, Jacqueline ;
Samuel, Rosabelle ;
Ashton, Peter ;
Abu Salim, Kamariah ;
Paun, Ovidiu .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2018, 127 :1-13
[53]  
HORTON P, 1981, Journal of the Adelaide Botanic Gardens, V3, P1
[54]   Polyploidy and genome restructuring: a variety of outcomes [J].
Hufton, Andrew L. ;
Panopoulou, Georgia .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2009, 19 (06) :600-606
[55]   RECONSTRUCTING THE COMPLEX EVOLUTIONARY ORIGIN OF WILD ALLOPOLYPLOID TOBACCOS (NICOTIANA SECTION SUAVEOLENTES) [J].
Kelly, Laura J. ;
Leitch, Andrew R. ;
Clarkson, James J. ;
Knapp, Sandra ;
Chase, Mark W. .
EVOLUTION, 2013, 67 (01) :80-94
[56]   Genomic relationships among Nicotiana species with different ploidy levels revealed by 5S rDNA spacer sequences and FISH/GISH [J].
Kitamura, S ;
Tanaka, A ;
Inoue, M .
GENES & GENETIC SYSTEMS, 2005, 80 (04) :251-260
[57]   ANGSD: Analysis of Next Generation Sequencing Data [J].
Korneliussen, Thorfinn Sand ;
Albrechtsen, Anders ;
Nielsen, Rasmus .
BMC BIOINFORMATICS, 2014, 15
[58]   Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years [J].
Koukalova, Blazena ;
Moraes, Ana Paula ;
Renny-Byfield, Simon ;
Matyasek, Roman ;
Leitch, Andrew Rowland ;
Kovarik, Ales .
NEW PHYTOLOGIST, 2010, 186 (01) :148-160
[59]   Perspective - Genomic plasticity and the diversity of polyploid plants [J].
Leitch, A. R. ;
Leitch, I. J. .
SCIENCE, 2008, 320 (5875) :481-483
[60]   The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae) [J].
Leitch, I. J. ;
Hanson, L. ;
Lim, K. Y. ;
Kovarik, A. ;
Chase, M. W. ;
Clarkson, J. J. ;
Leitch, A. R. .
ANNALS OF BOTANY, 2008, 101 (06) :805-814