Depth Video Inter Coding Based on Deep Frame Generation

被引:3
作者
Li, Ge [1 ]
Lei, Jianjun [1 ]
Pan, Zhaoqing [1 ]
Peng, Bo [1 ]
Ling, Nam [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Santa Clara Univ, Dept Comp Sci & Engn, Santa Clara, CA 95053 USA
基金
中国国家自然科学基金;
关键词
Encoding; Video coding; Redundancy; Deep learning; Color; Decoding; Correlation; depth video inter coding; MIV; deep learning; Ba-WFGNet; PREDICTION; EFFICIENCY; NETWORK; COMPRESSION; MULTIVIEW;
D O I
10.1109/TBC.2024.3374103
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the fact that depth video contains large similar smooth content, the depth video frame could be selectively generated at the decoder side without being encoded and transmitted at the encoder side, so as to achieve a significant improvement in coding efficiency. This paper proposes a deep frame generation-based depth video inter coding method to efficiently compress the depth video. To reduce temporal redundancies of the depth video, the proposed method encodes depth key frames and directly generates the reconstruction of depth non-key frames. Moreover, a warping-based frame generation network with boundary awareness (Ba-WFGNet) is designed to generate high-quality depth non-key frames at the decoder side. In the Ba-WFGNet, the temporal correlations among depth frames are utilized to generate the coarse depth non-key frame in a warping manner. Then, considering the boundary quality of depth video has an important impact on view synthesis, a boundary-aware refinement module is designed to further refine the coarse depth non-key frame for high-quality boundaries. The proposed method is implemented into MIV, and experimental results verify that the proposed method achieves superior coding efficiency.
引用
收藏
页码:708 / 718
页数:11
相关论文
共 53 条
[1]   Deep frame interpolation for video compression [J].
Begaint, Jean ;
Galpin, Franck ;
Guillotel, Philippe ;
Guillemot, Christine .
2019 DATA COMPRESSION CONFERENCE (DCC), 2019, :556-556
[2]  
Bjontegaard G., 2001, 1SC29WG11MPEG2001M15
[3]   MPEG Immersive Video Coding Standard [J].
Boyce, Jill M. ;
Dore, Renaud ;
Dziembowski, Adrian ;
Fleureau, Julien ;
Jung, Joel ;
Kroon, Bart ;
Salahieh, Basel ;
Vadakital, Vinod Kumar Malamal ;
Yu, Lu .
PROCEEDINGS OF THE IEEE, 2021, 109 (09) :1521-1536
[4]   Multi-view Multi-modality Priors Residual Network of Depth Video Enhancement for Bandwidth Limited Asymmetric Coding Framework [J].
Chen, Siqi ;
Liu, Qiong ;
Yang, You .
2019 DATA COMPRESSION CONFERENCE (DCC), 2019, :560-560
[5]   Fast CU Size Decision based on AQ-CNN for Depth Intra Coding in 3D-HEVC [J].
Chen, Yamei ;
Yu, Li ;
Li, Tiansong ;
Wang, Hongkui ;
Wang, Shengwei .
2019 DATA COMPRESSION CONFERENCE (DCC), 2019, :561-561
[6]   Deep Frame Prediction for Video Coding [J].
Choi, Hyomin ;
Bajic, Ivan V. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) :1843-1855
[7]  
Dziembowski A., 2019, 1SC29WG11N18709 ISO
[8]   Immersive Video Postprocessing for Efficient Video Coding [J].
Dziembowski, Adrian ;
Mieloch, Dawid ;
Jeong, Jun Young ;
Lee, Gwangsoon .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) :4349-4361
[9]  
gitlab, TEST MODEL IMMERSIVE
[10]   FeatureFlow: Robust Video Interpolation via Structure-to-texture Generation [J].
Gui, Shurui ;
Wang, Chaoyue ;
Chen, Qihua ;
Tao, Dacheng .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :14001-14010