Robust parallel laser driving of quantum dots for multiplexing of quantum light sources

被引:1
作者
Ramachandran, Ajan [1 ]
Wilbur, Grant R. [1 ]
Mathew, Reuble [1 ]
Mason, Allister [1 ]
O'Neal, Sabine [2 ,3 ]
Deppe, Dennis G. [2 ,4 ]
Hall, Kimberley C. [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[2] Univ Cent Florida, Coll Opt & Photon, Orlando, FL 32816 USA
[3] IMEC, Kissimmee, FL 34744 USA
[4] SdPhotonics, Richardson, TX 75081 USA
基金
加拿大自然科学与工程研究理事会;
关键词
POPULATION TRANSFER; PERFORMANCE; GENERATION;
D O I
10.1038/s41598-024-55634-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deterministic sources of quantum light (i.e. single photons or pairs of entangled photons) are required for a whole host of applications in quantum technology, including quantum imaging, quantum cryptography and the long-distance transfer of quantum information in future quantum networks. Semiconductor quantum dots are ideal candidates for solid-state quantum emitters as these artificial atoms have large dipole moments and a quantum confined energy level structure, enabling the realization of single photon sources with high repetition rates and high single photon purity. Quantum dots may also be triggered using a laser pulse for on-demand operation. The naturally-occurring size variations in ensembles of quantum dots offers the potential to increase the bandwidth of quantum communication systems through wavelength-division multiplexing, but conventional laser triggering schemes based on Rabi rotations are ineffective when applied to inequivalent emitters. Here we report the demonstration of the simultaneous triggering of >10 quantum dots using adiabatic rapid passage. We show that high-fidelity quantum state inversion is possible in a system of quantum dots with a 15 meV range of optical transition energies using a single broadband, chirped laser pulse, laying the foundation for high-bandwidth, multiplexed quantum networks.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Gigahertz-Clocked Teleportation of Time-Bin Qubits with a Quantum Dot in the Telecommunication C Band [J].
Anderson, M. ;
Mueller, T. ;
Skiba-Szymanska, J. ;
Krysa, A. B. ;
Huwer, J. ;
Stevenson, R. M. ;
Heffernan, J. ;
Ritchie, D. A. ;
Shields, A. J. .
PHYSICAL REVIEW APPLIED, 2020, 13 (05)
[2]   Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview [J].
Arakawa, Yasuhiko ;
Holmes, Mark J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[3]   Quantum key distribution with entangled photons generated on demand by a quantum dot [J].
Basset, Francesco Basso ;
Valeri, Mauro ;
Roccia, Emanuele ;
Muredda, Valerio ;
Poderini, Davide ;
Neuwirth, Julia ;
Spagnolo, Nicolo ;
Rota, Michele B. ;
Carvacho, Gonzalo ;
Sciarrino, Fabio ;
Trotta, Rinaldo .
SCIENCE ADVANCES, 2021, 7 (12)
[4]   Spectral engineering of carrier dynamics in In(Ga)As self-assembled quantum dots [J].
Boggess, TF ;
Zhang, L ;
Deppe, DG ;
Huffaker, DL ;
Cao, C .
APPLIED PHYSICS LETTERS, 2001, 78 (03) :276-278
[5]   Swing-Up of Quantum Emitter Population Using Detuned Pulses [J].
Bracht, Thomas K. ;
Cosacchi, Michael ;
Seidelmann, Tim ;
Cygorek, Moritz ;
Vagov, Alexei ;
Axt, V. Martin ;
Heindel, Tobias ;
Reiter, Doris E. .
PRX QUANTUM, 2021, 2 (04)
[6]   Proof-of-principle demonstration of compiled Shor's algorithm using a quantum dot single-photon source [J].
Duan, Zhao-Chen ;
Li, Jin-Peng ;
Qin, Jian ;
Yu, Ying ;
Huo, Yong-Heng ;
Hoefling, Sven ;
Lu, Chao-Yang ;
Liu, Nai-Le ;
Chen, Kai ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2020, 28 (13) :18917-18930
[7]   Simultaneous Deterministic Control of Distant Qubits in Two Semiconductor Quantum Dots [J].
Gamouras, A. ;
Mathew, R. ;
Freisem, S. ;
Deppe, D. G. ;
Hall, K. C. .
NANO LETTERS, 2013, 13 (10) :4666-4670
[8]   Optically engineered ultrafast pulses for controlled rotations of exciton qubits in semiconductor quantum dots [J].
Gamouras, Angela ;
Mathew, Reuble ;
Hall, Kimberley C. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
[9]   Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J].
Gerard, JM ;
Sermage, B ;
Gayral, B ;
Legrand, B ;
Costard, E ;
Thierry-Mieg, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1110-1113
[10]   Proposed Robust and High-Fidelity Preparation of Excitons and Biexcitons in Semiconductor Quantum Dots Making Active Use of Phonons [J].
Glaessl, M. ;
Barth, A. M. ;
Axt, V. M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)