Geometric Positivity of the Fusion Products of Unitary Vertex Operator Algebra Modules

被引:1
作者
Gui, Bin [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
关键词
TENSOR PRODUCT; CATEGORIES; INVARIANCE; BLOCKS; TRACE;
D O I
10.1007/s00220-024-04959-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A unitary and strongly rational vertex operator algebra (VOA) V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is called strongly unitary if all irreducible V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules are unitarizable. A strongly unitary VOA V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is called completely unitary if for each unitary V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules W1,W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1,{\mathbb {W}}_2$$\end{document} the canonical non-degenerate Hermitian form on the fusion product W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document} is positive. It is known that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is completely unitary, then the modular category Modu(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Mod}<^>\textrm{u}({\mathbb {V}})$$\end{document} of unitary V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-modules is unitary (Gui in Commun Math Phys 372(3):893-950, 2019), and all simple VOA extensions of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} are automatically unitary and moreover completely unitary (Gui in Int Math Res Not 2022(10):7550-7614, 2022; Carpi et al. in Commun Math Phys 1-44, 2023). In this paper, we give a geometric characterization of the positivity of the Hermitian product on W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document}, which helps us prove that the positivity is always true when W1 boxed times W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {W}}_1\boxtimes {\mathbb {W}}_2$$\end{document} is an irreducible and unitarizable V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-module. We give several applications: (1) We show that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is a unitary (strongly rational) holomorphic VOA with a finite cyclic unitary automorphism group G, and if VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}<^>G$$\end{document} is strongly unitary, then VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}<^>G$$\end{document} is completely unitary. This result applies to the cyclic permutation orbifolds of unitary holomophic VOAs. (2) We show that if V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document} is unitary and strongly rational, and if U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {U}}$$\end{document} is a simple current extension which is unitarizable as a V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {V}}$$\end{document}-module, then U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {U}}$$\end{document} is a unitary VOA.
引用
收藏
页数:65
相关论文
共 65 条
  • [1] Abe T, 2003, OSAKA J MATH, V40, P375
  • [2] Twisted sectors for tensor product vertex operator algebras associated to permutation groups
    Barron, K
    Dong, CY
    Mason, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (02) : 349 - 384
  • [3] Conformal Nets II: Conformal Blocks
    Bartels, Arthur
    Douglas, Christopher L.
    Henriques, Andre
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) : 393 - 458
  • [4] Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras
    Belkale, Prakash
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 98 (04): : 367 - 389
  • [5] Carnahan S., 2016, ARXIV
  • [6] Carpi S., VERTEX OPERATOR ALGE
  • [7] Energy bounds for vertex operator algebra extensions
    Carpi, Sebastiano
    Tomassini, Luca
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (03)
  • [8] Carpi S, 2023, COMMUN MATH PHYS, V402, P169, DOI 10.1007/s00220-023-04722-9
  • [9] Carpi S, 2023, Arxiv, DOI [arXiv:2304.14263, 10.48550/arXiv.2304.14263, DOI 10.48550/ARXIV.2304.14263]
  • [10] From Vertex Operator Algebras to Conformal Nets and Back
    Carpi, Sebastiano
    Kawahigashi, Yasuyuki
    Longo, Roberto
    Weiner, Mihaly
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 254 (1213) : I - +