Which methods perform better for real-time Hurst parameter estimation?

被引:0
|
作者
Chen, Daniel [1 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci & Business Adm, Management Entrepreneurship & Technol MET, Berkeley, CA 94720 USA
关键词
Hurst estimation; signal modeling; variability quantification; FRACTIONAL GAUSSIAN-NOISE;
D O I
10.1109/ICCMA59762.2023.10374691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Long-range dependence (LRD) in complex time series is becoming an increasingly important aspect in the era of big data as we explore further into the complex world. From natural processes like heart rate variability (HRV) or man-made systems like the stock market, LRD is omnipresent. As such, accurately characterizing the LRD in terms of the Hurst parameter in these complex time series generated from complex systems is important. Most existing methods for Hurst parameter estimation are for batch or offline processing. To achieve real-time evaluation, a moving window approach is applied when quantifying the LRD in the time series. This paper focuses on evaluating various techniques that estimate the Hurst parameter embedded in the LRD time series. Nine techniques were analyzed, and three were determined to be the most accurate: Higuchi's method, Diffusion Entropy Analysis, and Detrended Fluctuation Analysis for online real-time estimation of Hurst parameters. All reported results are reproducible for further robustness evaluation of online real-time Hurst parameter estimation.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [41] Real-Time Dynamic Parameter Estimation for an Exponential Dynamic Load Model
    Rouhani, Alireza
    Abur, Ali
    IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (03) : 1530 - 1536
  • [42] Real-Time Moving Horizon State and Parameter Estimation for SMB Processes
    Kuepper, Achim
    Diehl, Moritz
    Schloederl, Johannes P.
    Bock, Hans G.
    Engell, Sebastian
    10TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2009, 27 : 1233 - 1238
  • [43] A PARTICLE FILTERING ALGORITHM FOR PARAMETER ESTIMATION IN REAL-TIME BIOSENSOR ARRAYS
    Gokdemir, Mahsuni
    Vikalo, Haris
    2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 118 - 121
  • [44] Real-time parameter estimation for resistance-capacitance coupling network
    Zhang, L. (zhlyad@163.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [45] REAL-TIME PARAMETER ESTIMATION STUDY FOR INERTIA PROPERTIES OF GROUND VEHICLES
    Kolansky, Jeremy
    Sandu, Corina
    ARCHIVE OF MECHANICAL ENGINEERING, 2013, 60 (01) : 7 - 21
  • [46] NONLINEAR PARAMETER-ESTIMATION FOR REAL-TIME ANALYTICAL DISTILLATION MODELS
    GANGULY, S
    SAIRAM, V
    SARAF, DN
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (01) : 99 - 107
  • [47] Real-time parameter estimation of Zika outbreaks using model averaging
    Sebrango-Rodriguez, C. R.
    Martinez-Bello, D. A.
    Sanchez-Valdes, L.
    Thilakarathne, P. J.
    Del Fava, E.
    Van Der Stuyft, P.
    Lopez-Quilez, A.
    Shkedy, Z.
    EPIDEMIOLOGY AND INFECTION, 2017, 145 (11): : 2313 - 2323
  • [48] REAL-TIME BATTERY MODEL PARAMETER ESTIMATION WITH IMPROVED OBSERVABILITY AND ROBUSTNESS
    Lee, Tae-Kyung
    Anderson, Dyche
    7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [49] PARTITIONED STATE AND PARAMETER-ESTIMATION FOR REAL-TIME FLOOD FORECASTING
    HEBSON, C
    WOOD, EF
    APPLIED MATHEMATICS AND COMPUTATION, 1985, 17 (04) : 357 - 374
  • [50] Low-Variance Parameter Estimation Approach for Real-Time of Process
    Patron, Gabriel D.
    Ricardez-Sandoval, Luis
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (45) : 16780 - 16798