Which methods perform better for real-time Hurst parameter estimation?

被引:0
|
作者
Chen, Daniel [1 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci & Business Adm, Management Entrepreneurship & Technol MET, Berkeley, CA 94720 USA
关键词
Hurst estimation; signal modeling; variability quantification; FRACTIONAL GAUSSIAN-NOISE;
D O I
10.1109/ICCMA59762.2023.10374691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Long-range dependence (LRD) in complex time series is becoming an increasingly important aspect in the era of big data as we explore further into the complex world. From natural processes like heart rate variability (HRV) or man-made systems like the stock market, LRD is omnipresent. As such, accurately characterizing the LRD in terms of the Hurst parameter in these complex time series generated from complex systems is important. Most existing methods for Hurst parameter estimation are for batch or offline processing. To achieve real-time evaluation, a moving window approach is applied when quantifying the LRD in the time series. This paper focuses on evaluating various techniques that estimate the Hurst parameter embedded in the LRD time series. Nine techniques were analyzed, and three were determined to be the most accurate: Higuchi's method, Diffusion Entropy Analysis, and Detrended Fluctuation Analysis for online real-time estimation of Hurst parameters. All reported results are reproducible for further robustness evaluation of online real-time Hurst parameter estimation.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [21] Motion Estimation in Real-Time with Optimisation Methods
    Bruhn, Andres
    IT-INFORMATION TECHNOLOGY, 2008, 50 (01): : 66 - 69
  • [22] Real-time modal parameter estimation using subspace methods and fiber Bragg-gratings
    Tasker, F
    Bosse, A
    Kirby, G
    Fisher, S
    IMAC - PROCEEDINGS OF THE 16TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS 1 AND 2, 1998, 3243 : 536 - 541
  • [23] Real-time Optimization with persistent parameter adaptation using online parameter estimation
    Matias, Jose O. A.
    Le Roux, Galo A. C.
    JOURNAL OF PROCESS CONTROL, 2018, 68 : 195 - 204
  • [24] PARAMETER-ESTIMATION IN ADSORPTION CHROMATOGRAPHY BY REAL-TIME ANALYSIS
    WAKAO, N
    KAGUEI, S
    SMITH, JM
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1979, 12 (06) : 481 - 483
  • [25] Real-time parameter estimation for degrading and pinching hysteretic models
    Wu, Meiliang
    Smyth, Andrew
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2008, 43 (09) : 822 - 833
  • [26] Real-Time Heel Strike Parameter Estimation for FES Triggering
    Rahman, Haaris
    Kumbla, Ashwij
    Megharjun, V. N.
    Talasila, Viswanath
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 749 - 760
  • [27] Adaptive Notch Filter Using Real-Time Parameter Estimation
    Levin, Jason
    Perez-Arancibia, Nestor O.
    Ioannou, Petros A.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (03) : 673 - 681
  • [28] On parameter estimation of a simple real-time flow aggregation model
    Fu, Huirong
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2006, 19 (07) : 795 - 808
  • [29] A real-time algorithm for moving horizon state and parameter estimation
    Kuehl, Peter
    Diehl, Moritz
    Kraus, Tom
    Schloeder, Johannes P.
    Bock, Hans Georg
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 71 - 83
  • [30] Real-time parameter estimation of servo-pneumatic system
    Kaplanoglu, E.
    Yilmaz, O.
    MECHANIKA 2007, PROCEEDINGS, 2007, : 141 - 145