On nth order Euler polynomials of degree n that are Eisenstein

被引:1
作者
Filaseta, Michael [1 ]
Luckner, Thomas [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Flagler Coll, Dept Math, St Augustine, FL 32084 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 01期
关键词
Bernoulli number; Eisenstein polynomial; Euler polynomial; Genoocchi number; Irreducible polynomial; GENOCCHI NUMBERS; CONGRUENCES;
D O I
10.1016/j.indag.2023.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For m an even positive integer and p an odd prime, we show that the generalized Euler polynomial mp (x) is in Eisenstein form with respect to p if and only if p does not divide m(2m - 1)Bm. As a consequence, we deduce that at least 1/3 of the generalized Euler polynomials En(n)(x) are in Eisenstein form with respect to a prime p dividing n and, hence, irreducible over Q. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 12 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V55
[2]  
Adams J.C., 1878, J. Reine Angew. Math, V85, P269
[3]   Congruences of p-adic integer order Bernoulli numbers [J].
Adelberg, A .
JOURNAL OF NUMBER THEORY, 1996, 59 (02) :374-388
[4]  
Adelberg A., 2002, Colloq. Math, V93, P21
[5]  
Borevich ZI, 1966, NUMBER THEORY
[6]  
ERDOS P, 1999, CRM P LECT NOTES, V19, P87
[7]   Irregular primes with respect to Genocchi numbers and Artin's primitive root conjecture [J].
Hu, Su ;
Kim, Min-Soo ;
Moree, Pieter ;
Sha, Min .
JOURNAL OF NUMBER THEORY, 2019, 205 :59-80
[8]  
Kummer EE, 1852, J REINE ANGEW MATH, V44, P93
[9]   Applications of an explicit formula for the generalized Euler numbers [J].
Liu, Guo Dong ;
Zhang, Wen Peng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) :343-352
[10]   Prime divisors of l-Genocchi numbers and the ubiquity of Ramanujan-style congruences of level l [J].
Moree, Pieter ;
Sgobba, Pietro .
JOURNAL OF NUMBER THEORY, 2023, 251 :147-184