Data-driven robust optimization for contextual vehicle rebalancing in on-demand ride services under demand uncertainty

被引:7
|
作者
Guo, Zhen [1 ,2 ]
Yu, Bin [1 ,2 ]
Shan, Wenxuan [1 ,2 ]
Yao, Baozhen [3 ]
机构
[1] Beihang Univ, Minist Educ, Key Lab Intelligent Transportat Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[3] Dalian Univ Technol, Sch Automot Engn, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicle rebalancing; Data-driven robust optimization; Contextual information; Demand prediction; Affine decision rule; DYNAMIC USER EQUILIBRIUM; SMART PREDICT; MODEL; ASSIGNMENT; MANAGEMENT; FRAMEWORK; DESIGN; SYSTEM;
D O I
10.1016/j.trc.2023.104244
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The rebalancing of idle vehicles is critical to mitigating the supply-demand imbalance in on -demand ride services. Motivated by a ride service platform, this paper investigates a short-term vehicle rebalancing problem under demand uncertainty in the presence of contextual data. We deploy a novel data-driven robust optimization approach that takes a direct path from "Data"to "Decision"instead of the predict-then-optimize paradigm and leverages the prediction problem structure to seamlessly integrate demand predictions with optimization models. We further develop a risk-based uncertainty set to evaluate how well uncertain demand is estimated from contextual data by prediction models, and discuss the classes of prediction models that are highly compatible with robust optimization models. Based on the convex analysis and duality theory, we reformulate the original models into equivalent Mixed Integer Second Order Cone Programmings (MISOCPs) that are solvable via state-of-the-art commercial solvers. To solve large-scale instances, we utilize the affine decision rule technique to derive polynomial-sized reformulations. Extensive experiments are conducted on the instances based on a real-world on-demand ride service in Chengdu. The computational experiments demonstrate the promising performance of our rebalancing strategies and solution approaches.
引用
收藏
页数:33
相关论文
共 50 条
  • [11] Data-driven robust optimisation of hydrogen infrastructure planning under demand uncertainty using a hybrid decomposition method
    Zhou, Xu
    Efthymiadou, Margarita E.
    Papageorgiou, Lazaros G.
    Charitopoulos, Vassilis M.
    APPLIED ENERGY, 2024, 376
  • [12] A Data-Driven Robust Optimization Approach to Operational Optimization of Industrial Steam Systems under Uncertainty
    Zhao, Liang
    Ning, Chao
    You, Fengqi
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1399 - 1404
  • [13] Data-Driven Vehicle Rebalancing With Predictive Prescriptions in the Ride-Hailing System
    Guo, Xiaotong
    Wang, Qingyi
    Zhao, Jinhua
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 : 251 - 266
  • [14] Operational optimization of industrial steam systems under uncertainty using data-Driven adaptive robust optimization
    Zhao, Liang
    Ning, Chao
    You, Fengqi
    AICHE JOURNAL, 2019, 65 (07)
  • [15] Robust LNG sales planning under demand uncertainty: A data-driven goal-oriented approach
    Feng, Yulin
    Li, Xianyu
    Liu, Dingzhi
    Shang, Chao
    DIGITAL CHEMICAL ENGINEERING, 2023, 9
  • [16] Diesel blending under property uncertainty: A data-driven robust optimization approach
    Long, Jian
    Jiang, Siyi
    He, Renchu
    Zhao, Liang
    FUEL, 2021, 306
  • [17] Modeling and Managing Mixed On-Demand Ride Services of Human-Driven Vehicles and Autonomous Vehicles
    Mo, Dong
    Chen, Xiqun
    Zhang, Junlin
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2022, 157 : 80 - 119
  • [18] Industrial Steam Systems Optimization under Uncertainty Using Data-Driven Adaptive Robust Optimization
    Zhao, Liang
    Ning, Chao
    You, Fengqi
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2127 - 2132
  • [19] A data-driven optimization framework for industrial demand-side flexibility
    Manna, Carlo
    Lahariya, Manu
    Karami, Farzaneh
    Develder, Chris
    ENERGY, 2023, 278
  • [20] Data-driven economic dispatch for islanded micro-grid considering uncertainty and demand response
    Hou, Hui
    Wang, Qing
    Xiao, Zhenfeng
    Xue, Mengya
    Wu, Yefan
    Deng, Xiangtian
    Xie, Changjun
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 136