Double U-Net (W-Net): A change detection network with two heads for remote sensing imagery

被引:24
|
作者
Wang, Xue [1 ,2 ]
Yan, Xulan [1 ,2 ]
Tan, Kun [1 ,2 ]
Pan, Chen [2 ,3 ]
Ding, Jianwei [4 ]
Liu, Zhaoxian [4 ]
Dong, Xinfeng [5 ]
机构
[1] East China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Key Lab Spatial Temporal Big Data Anal & Applicat, Minist Nat Resources, Shanghai 200241, Peoples R China
[3] Shanghai Municipal Inst Surveying & Mapping, Shanghai 200063, Peoples R China
[4] Second Surveying & Mapping Inst Hebei, Shijiazhuang 050037, Peoples R China
[5] China Aero Geophys Survey & Remote Sensing Ctr Nat, Beijing 100083, Peoples R China
关键词
Superpixel; Double head; Deep learning; Change detection;
D O I
10.1016/j.jag.2023.103456
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recently, the deep learning algorithms have been increasingly utilized in remote sensing change detection. However, incomplete buildings and the blurred edges caused by the complex scenes in change detection applications make the detection results fail to describe the real land cover changes. Superpixels can be used to alleviate edge blurring, but the existing superpixel methods cannot be trained jointly with the models in change detection. In this work, we investigated an innovative double-head method using deep learning, called double UNet (W-Net), which consists of a superpixel module and a change detection module. Due to the superpixel module, W-Net can handle building edges very well. In order to solve problem that multiple subtasks fail to achieve the optimal results, a two-branch multi-task coupling framework of change detection and superpixels is designed for W-Net, which enables the model to achieve a globally optimal detection performance. The advancement of the W-Net was demonstrated using three public datasets. The F1score on LEVIR-CD dataset was 0.9031 and kappa coefficient was 0.8969. The F1-score on WHU building dataset was 0.9172 and kappa coefficient was 0.9142. The F1-score on SYSU-CD dataset was 0.8167and and kappa coefficient was 0.7724. The experiments confirmed that the W-Net is capable to detect the edges of changed area better and outperforms the other advanced change detection methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] SAR U-Net: Spatial attention residual U-Net structure for water body segmentation from remote sensing satellite images
    Jonnala, Naga Surekha
    Gupta, Neha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44425 - 44454
  • [42] Network Anomaly Detection With Temporal Convolutional Network and U-Net Model
    Mezina, Anzhelika
    Burget, Radim
    Travieso-Gonzalez, Carlos M.
    IEEE ACCESS, 2021, 9 : 143608 - 143622
  • [43] Modified U-Net block network for lung nodule detection
    Cheng, Hailan
    Zhu, Yaping
    Pan, Hong
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 599 - 605
  • [44] Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery
    Pyo, JongCheol
    Han, Kuk-jin
    Cho, Yoonrang
    Kim, Doyeon
    Jin, Daeyong
    FORESTS, 2022, 13 (12):
  • [45] Glacier Identification from Remote Sensing Image with Shadows Using an Improved U-Net Convolutional Network
    Zhang D.
    Fan H.
    Kang B.
    Gao J.
    Li T.
    Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 2022, 30 (04): : 806 - 818
  • [46] From W-Net to CDGAN: Bitemporal Change Detection via Deep Learning Techniques
    Hou, Bin
    Liu, Qingjie
    Wang, Heng
    Wang, Yunhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1790 - 1802
  • [47] Improved PSP and U-Net Architectures for Forest Segmentation in Remote Sensing Pictures
    Slyusar, Vadym
    Sliusar, Ihor
    Anatolii, Pavlenko
    2022 IEEE 2ND UKRAINIAN MICROWAVE WEEK, UKRMW, 2022, : 614 - 618
  • [48] Building Extraction from Remote Sensing Images Based on Improved U-Net
    Jin Shu
    Guan Mo
    Bian Yuchan
    Wang Shulei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [49] Remote Sensing Recognition Method of Grape Planting Regions Based on U-Net
    Zhang H.
    Zhang G.
    Zhu S.
    Chen H.
    Liang H.
    Sun Z.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (04): : 173 - 182
  • [50] Road Extraction from Remote Sensing Image Based on an Improved U-Net
    He, Zhe
    Tao, Yuxiang
    Luo, Xiaobo
    Xu, Hao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (16)