Double U-Net (W-Net): A change detection network with two heads for remote sensing imagery

被引:25
|
作者
Wang, Xue [1 ,2 ]
Yan, Xulan [1 ,2 ]
Tan, Kun [1 ,2 ]
Pan, Chen [2 ,3 ]
Ding, Jianwei [4 ]
Liu, Zhaoxian [4 ]
Dong, Xinfeng [5 ]
机构
[1] East China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Key Lab Spatial Temporal Big Data Anal & Applicat, Minist Nat Resources, Shanghai 200241, Peoples R China
[3] Shanghai Municipal Inst Surveying & Mapping, Shanghai 200063, Peoples R China
[4] Second Surveying & Mapping Inst Hebei, Shijiazhuang 050037, Peoples R China
[5] China Aero Geophys Survey & Remote Sensing Ctr Nat, Beijing 100083, Peoples R China
关键词
Superpixel; Double head; Deep learning; Change detection;
D O I
10.1016/j.jag.2023.103456
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recently, the deep learning algorithms have been increasingly utilized in remote sensing change detection. However, incomplete buildings and the blurred edges caused by the complex scenes in change detection applications make the detection results fail to describe the real land cover changes. Superpixels can be used to alleviate edge blurring, but the existing superpixel methods cannot be trained jointly with the models in change detection. In this work, we investigated an innovative double-head method using deep learning, called double UNet (W-Net), which consists of a superpixel module and a change detection module. Due to the superpixel module, W-Net can handle building edges very well. In order to solve problem that multiple subtasks fail to achieve the optimal results, a two-branch multi-task coupling framework of change detection and superpixels is designed for W-Net, which enables the model to achieve a globally optimal detection performance. The advancement of the W-Net was demonstrated using three public datasets. The F1score on LEVIR-CD dataset was 0.9031 and kappa coefficient was 0.8969. The F1-score on WHU building dataset was 0.9172 and kappa coefficient was 0.9142. The F1-score on SYSU-CD dataset was 0.8167and and kappa coefficient was 0.7724. The experiments confirmed that the W-Net is capable to detect the edges of changed area better and outperforms the other advanced change detection methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] DU-Net-Cloud: a smart cloud-edge application with an attention mechanism and U-Net for remote sensing images and processing
    Kong, Jiayuan
    Zhang, Yanjun
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2023, 12 (01):
  • [42] DU-Net-Cloud: a smart cloud-edge application with an attention mechanism and U-Net for remote sensing images and processing
    Jiayuan Kong
    Yanjun Zhang
    Journal of Cloud Computing, 12
  • [43] Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE
    Song, Changwoo
    Wahyu, Wiratama
    Jung, Jihun
    Hong, Seongjae
    Kim, Daehee
    Kang, Joohyung
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (06) : 1579 - 1590
  • [44] A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images
    Chen, Hesheng
    He, Yi
    Zhang, Lifeng
    Yao, Sheng
    Yang, Wang
    Fang, Yumin
    Liu, Yaoxiang
    Gao, Binghai
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 552 - 577
  • [45] Cascaded U-Net with Training Wheel Attention Module for Change Detection in Satellite Images
    Adil, Elyar
    Yang, Xiangli
    Huang, Pingping
    Liu, Xiaolong
    Tan, Weixian
    Yang, Jianxi
    REMOTE SENSING, 2022, 14 (24)
  • [46] Individual tree crown delineation in high-resolution remote sensing images based on U-Net
    Maximilian Freudenberg
    Paul Magdon
    Nils Nölke
    Neural Computing and Applications, 2022, 34 : 22197 - 22207
  • [47] Dual Hybrid Attention Mechanism-Based U-Net for Building Segmentation in Remote Sensing Images
    Lei, Jingxiong
    Liu, Xuzhi
    Yang, Haolang
    Zeng, Zeyu
    Feng, Jun
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [48] Individual tree crown delineation in high-resolution remote sensing images based on U-Net
    Freudenberg, Maximilian
    Magdon, Paul
    Noelke, Nils
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24) : 22197 - 22207
  • [49] CrackHAM: A Novel Automatic Crack Detection Network Based on U-Net for Asphalt Pavement
    He, Mianqing
    Lau, Tze Liang
    IEEE ACCESS, 2024, 12 : 12655 - 12666
  • [50] Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network
    Samarin, Maxim
    Zweifel, Lauren
    Roth, Volker
    Alewell, Christine
    REMOTE SENSING, 2020, 12 (24) : 1 - 21