Harnessing edge-enhanced attention mechanisms for supernova detection in deep learning frameworks

被引:1
作者
Yin, K. [1 ]
Jia, J. [1 ,2 ]
Li, F. [1 ]
Gao, X. [3 ]
Sun, T. [4 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[2] Collaborat Innovat Ctr Novel Software Technol & In, Nanjing 210000, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Xinjiang, Peoples R China
[4] Chinese Acad Sci, Purple Mt Observ, Nanjing 210023, Jiangsu, Peoples R China
关键词
Object detection; Edge attention; Data augmentation; Supernova detection; Sky survey; SYNOPTIC SURVEY TELESCOPE;
D O I
10.1016/j.ascom.2023.100784
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent studies have shown the advantages of convolutional neural networks in the classification and detection of supernovae. In our prior work, we employed one-stage object detection frameworks to address the challenges of presupposed location and varying image sizes in supernova detection. Notably, the backbone of the object detectors naturally emphasized the edges of candidate regions in the visualized heatmap, reflecting the strategies adopted by human observers. Capitalizing on this similarity, we introduce an innovative edge attention module, tailored to prioritize the edges of candidate regions, and improved the performance of supernova detectors. In parallel, we have developed a three-channel supernova detection dataset by integrating science (current), template (reference), and difference images into a three-channel configuration. The candidates in the new dataset are more conspicuous. To assess the efficacy of our edge attention module, we conducted a series of experiments on the proposed dataset. The experimental results establish the superiority of the proposed method in detecting supernovae. Additionally, visualizations of the feature maps shows the proposed edge attention is able to reallocate weights around the candidate edges, corroborating its effectiveness.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] The Dark Energy Survey: more than dark energy - an overview
    Abbott, T.
    Abdalla, F. B.
    Aleksic, J.
    Allam, S.
    Amara, A.
    Bacon, D.
    Balbinot, E.
    Banerji, M.
    Bechtol, K.
    Benoit-Levy, A.
    Bernstein, G. M.
    Bertin, E.
    Blazek, J.
    Bonnett, C.
    Bridle, S.
    Brooks, D.
    Brunner, R. J.
    Buckley-Geer, E.
    Burke, D. L.
    Caminha, G. B.
    Capozzi, D.
    Carlsen, J.
    Carnero-Rosell, A.
    Carollo, M.
    Carrasco-Kind, M.
    Carretero, J.
    Castander, F. J.
    Clerkin, L.
    Collett, T.
    Conselice, C.
    Crocce, M.
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    Davis, T. M.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Dodelson, S.
    Doel, P.
    Drlica-Wagner, A.
    Estrada, J.
    Etherington, J.
    Evrard, A. E.
    Fabbri, J.
    Finley, D. A.
    Flaugher, B.
    Foley, R. J.
    Fosalba, P.
    Frieman, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1270 - 1299
  • [2] Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
  • [3] Deblending and classifying astronomical sources with Mask R-CNN deep learning
    Burke, Colin J.
    Aleo, Patrick D.
    Chen, Yu-Ching
    Liu, Xin
    Peterson, John R.
    Sembroski, Glenn H.
    Lin, Joshua Yao-Yu
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (03) : 3952 - 3965
  • [4] Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection
    Cabrera-Vives, Guillermo
    Reyes, Ignacio
    Forster, Francisco
    Estevez, Pablo A.
    Maureira, Juan-Carlos
    [J]. ASTROPHYSICAL JOURNAL, 2017, 836 (01)
  • [5] Cabrera-Vives G, 2016, IEEE IJCNN, P251, DOI 10.1109/IJCNN.2016.7727206
  • [6] BRIEF: Binary Robust Independent Elementary Features
    Calonder, Michael
    Lepetit, Vincent
    Strecha, Christoph
    Fua, Pascal
    [J]. COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 : 778 - 792
  • [7] Deep Recurrent Neural Networks for Supernovae Classification
    Charnock, Tom
    Moss, Adam
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2017, 837 (02)
  • [8] Cho KYHY, 2014, Arxiv, DOI arXiv:1406.1078
  • [9] Chung JY, 2014, Arxiv, DOI [arXiv:1412.3555, 10.48550/arXiv.1412.3555, DOI 10.48550/ARXIV.1412.3555]
  • [10] Machine learning classification of SDSS transient survey images
    du Buisson, L.
    Sivanandam, N.
    Bassett, Bruce A.
    Smith, M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 454 (02) : 2026 - 2038