Machine learning prediction of the degree of food processing

被引:57
作者
Menichetti, Giulia [1 ,2 ,3 ]
Ravandi, Babak [2 ,3 ]
Mozaffarian, Dariush [4 ,5 ,6 ]
Barabasi, Albert-Laszlo [2 ,3 ,7 ,8 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Channing Div Network Med, Dept Med, Boston, MA USA
[2] Northeastern Univ, Network Sci Inst, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[4] Tufts Friedman Sch Nutr Sci & Policy, Boston, MA USA
[5] Tufts Sch Med, Boston, MA USA
[6] Med Ctr, Boston, MA USA
[7] Cent European Univ, Dept Network & Data Sci, Budapest, Hungary
[8] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
CARDIOVASCULAR HEALTH; CONSUMPTION; RISK; ASSOCIATION; PATTERNS; EAT;
D O I
10.1038/s41467-023-37457-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the accumulating evidence that increased consumption of ultra-processed food has adverse health implications, it remains difficult to decide what constitutes processed food. Indeed, the current processing-based classification of food has limited coverage and does not differentiate between degrees of processing, hindering consumer choices and slowing research on the health implications of processed food. Here we introduce a machine learning algorithm that accurately predicts the degree of processing for any food, indicating that over 73% of the US food supply is ultra-processed. We show that the increased reliance of an individual's diet on ultra-processed food correlates with higher risk of metabolic syndrome, diabetes, angina, elevated blood pressure and biological age, and reduces the bio-availability of vitamins. Finally, we find that replacing foods with less processed alternatives can significantly reduce the health implications of ultra-processed food, suggesting that access to information on the degree of processing, currently unavailable to consumers, could improve population health.
引用
收藏
页数:13
相关论文
共 93 条
[1]   Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort [J].
Adjibade, Moufidath ;
Julia, Chantal ;
Alles, Benjamin ;
Touvier, Mathilde ;
Lemogne, Cedric ;
Srour, Bernard ;
Hercberg, Serge ;
Galan, Pilar ;
Assmann, Karen E. ;
Kesse-Guyot, Emmanuelle .
BMC MEDICINE, 2019, 17 (1)
[2]  
Ahuja J, 2012, USDA food and nutrient database for dietary studies, 5.0
[3]   Ultra-processed food consumptioncm and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project [J].
Alonso-Pedrero, Lucia ;
Ojeda-Rodriguez, Ana ;
Martinez-Gonzalez, Miguel A. ;
Zalba, Guillermo ;
Bes-Rastrollo, Maira ;
Marti, Amelia .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2020, 111 (06) :1259-1266
[4]  
Arisseto AP, 2016, FOOD HYGIENE AND TOXICOLOGY IN READY-TO-EAT FOODS, P383, DOI 10.1016/B978-0-12-801916-0.00021-2
[5]   The Healthfulness of the US Packaged Food and Beverage Supply: A Cross-Sectional Study [J].
Baldridge, Abigail S. ;
Huffman, Mark D. ;
Taylor, Fraser ;
Xavier, Dagan ;
Bright, Brooke ;
Van Horn, Linda V. ;
Neal, Bruce ;
Dunford, Elizabeth .
NUTRIENTS, 2019, 11 (08)
[6]   The unmapped chemical complexity of our diet [J].
Barabasi, Albert-Laszlo ;
Menichetti, Giulia ;
Loscalzo, Joseph .
NATURE FOOD, 2020, 1 (01) :33-37
[7]   Robustness of Food Processing Classification Systems [J].
Bleiweiss-Sande, Rachel ;
Chui, Kenneth ;
Evans, E. Whitney ;
Goldberg, Jeanne ;
Amin, Sarah ;
Sacheck, Jennifer .
NUTRIENTS, 2019, 11 (06)
[8]   Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study [J].
Bonaccio, Marialaura ;
Di Castelnuovo, Augusto ;
Costanzo, Simona ;
De Curtis, Amalia ;
Persichillo, Mariarosaria ;
Sofi, Francesco ;
Cerletti, Chiara ;
Donati, Maria Bendetta ;
de Gaetano, Giovanni ;
Iacoviello, Licia .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2021, 113 (02) :446-455
[9]   Ultra-processed foods: how functional is the NOVA system? [J].
Braesco, Veronique ;
Souchon, Isabelle ;
Sauvant, Patrick ;
Haurogne, Typhaine ;
Maillot, Matthieu ;
Feart, Catherine ;
Darmon, Nicole .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2022, 76 (09) :1245-1253
[10]   Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013-2014 [J].
Buckley, Jessie P. ;
Kim, Hyunju ;
Wong, Eugenia ;
Rebholz, Casey M. .
ENVIRONMENT INTERNATIONAL, 2019, 131