TPGraph: A Spatial-Temporal Graph Learning Framework for Accurate Traffic Prediction on Arterial Roads

被引:2
|
作者
Ouyang, Jinhui [1 ]
Yu, Mingxia [2 ]
Yu, Weiren [3 ]
Qin, Zheng [2 ]
Regan, Amelia C. [4 ]
Wu, Di [1 ]
机构
[1] Hunan Univ, Key Lab Embedded & Network Comp Hunan Prov, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, England
[4] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Roads; Feature extraction; Data mining; Convolutional neural networks; Convolution; Transformers; Predictive models; Traffic prediction; spatial-temporal transformer; multi-head attention mechanism; graph neural networks; DEEP; FLOW; NETWORK; TIME;
D O I
10.1109/TITS.2023.3334558
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The accurate prediction of traffic conditions, including speed, flow, and travel time, poses a critical challenge in urbanization that significantly impacts car owners and road administrators. However, in certain scenarios with restricted road data availability (e.g. lack of traffic light status and signal control strategies, cooperation between road administrators and third parties, etc.), it is imperative to make effective use of basic road information (e.g. historical traffic data and road connectivity) to improve both prediction accuracy and scalability on various arterial road networks against state-of-art deep learning models. In this paper, we propose a spatial-temporal learning framework TPGraph for an accurate prediction of arterial roads' traffic data by effectively utilizing upstream and downstream road information. TPGraph is composed of three major parts: 1) A multi-scale temporal feature fusion module that utilizes a multi-head attention mechanism to integrate recently-periodic features, daily-periodic features, and weekly-periodic features; 2) A multi-graph convolution module that employs graph fusion and graph convolution networks to capture richer spatial semantics, and 3) A dynamic spatial-temporal prediction module that leverages a spatial-temporal transformer for single or multiple traffic-state predictions. Our proposed framework, TPGraph, leverages just multi-scale historical traffic conditions and readily accessible spatial factors as input to generate accurate predictions of future traffic conditions. We mainly evaluate the performance of our approach through multi-step prediction experiments conducted at hourly intervals, forecasting travel time or travel speed for each road at 15 mins, 30 mins, and 1 hour. Furthermore, we conduct extensive experiments on real-world arterial road datasets to demonstrate the superior predictive performance of TPGraph compared to existing methods.
引用
收藏
页码:3911 / 3926
页数:16
相关论文
共 50 条
  • [21] Global-Local Feature Learning via Dynamic Spatial-Temporal Graph Neural Network in Meteorological Prediction
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6280 - 6292
  • [22] A Spatial-Temporal Gated Hypergraph Convolution Network for Traffic Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Chen, Yanjiao
    Li, Jianxin
    Liu, Qin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9546 - 9559
  • [23] Spatial-Temporal Aggregation Graph Convolution Network for Efficient Mobile Cellular Traffic Prediction
    Zhao, Nan
    Wu, Aonan
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 587 - 591
  • [24] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [25] A Deep Learning Framework with Spatial-Temporal Attention Mechanism for Cellular Traffic Prediction
    Gao, Yun
    Wei, Xin
    Zhou, Liang
    Lv, Haibing
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [26] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [27] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [28] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [29] Spatial-Temporal Correlation Learning for Traffic Demand Prediction
    Wu, Yiling
    Zhao, Yingping
    Zhang, Xinfeng
    Wang, Yaowei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15745 - 15758
  • [30] STGC-GNNs: A GNN-based traffic prediction framework with a spatial-temporal Granger causality graph
    He, Silu
    Luo, Qinyao
    Du, Ronghua
    Zhao, Ling
    He, Guangjun
    Fu, Han
    Li, Haifeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 623