Performance analysis and multi-objective optimization of a novel poly-generation system integrating SOFC/GT with SCO2/HDH/ERC

被引:9
作者
Liu, Caihao [1 ]
Han, Jitian [1 ]
Liang, Wenxing [1 ]
Ge, Yi [1 ]
Zhu, Wanchao [1 ]
Yang, Jinwen [1 ]
Mou, Chaoyang [1 ]
Lv, Wan [1 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Poly-generation; SOFC; Humidification-dehumidification cycle; Multi-objective optimization; CELL-GAS TURBINE; THERMODYNAMIC ANALYSIS; DESALINATION SYSTEM; COMBINED POWER; HEAT; DRIVEN;
D O I
10.1016/j.applthermaleng.2023.122075
中图分类号
O414.1 [热力学];
学科分类号
摘要
The SOFC-based poly-generation system is an effective and environmental-friendly technology. To further improve energy efficiency of poly-generation system, a novel poly-generation system is developed based on solid oxide fuel cell/gas turbine (SOFC/GT) as the prime mover and supercritical carbon dioxide (SCO2) Brayton cycle, humidification and dehumidification (HDH) desalination and ejector refrigeration cycle (ERC) as the waste heat recovery units to produce power, cooling and freshwater. In the proposed system, a novel configuration of combining the SCO2 cycle with HDH is applied to recover the waste heat of SOFC/GT hybrid system. A math-ematical model is developed to explore the system performances from the energy, exergy and economic per-spectives. The effects of key parameters such as fuel flowrate, fuel utilization factor, SOFC operating pressure and temperature, and desalination top temperature on system performances are investigated. Multi-objectives opti-mization is conducted to obtain the optimal design parameters of the poly-generation system. The results show that the system net power output, cooling capacity and freshwater production are 273.769 kW, 12.997 kW and 24.23 g/s with the total cost being 14.01 $/h under the given condition, respectively. The electrical and exergy efficiencies and total gained output ratio of the system are 68.35 %, 67.23 % and 85.25 %, respectively. The parametric analysis indicates that an appropriate increase in fuel flowrate, fuel utilization factor and SOFC operating pressure and temperature can improve the electrical and exergy efficiency. The optimization results demonstrate that the system exergy efficiency and total cost are 67.48 % and 13.94 $/h.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A novel triple pressure HRSG integrated with MED/SOFC/GT for cogeneration of electricity and freshwater: Techno-economic-environmental assessment, and multi-objective optimization
    Vojdani, Mehrdad
    Fakhari, Iman
    Ahmadi, Pouria
    ENERGY CONVERSION AND MANAGEMENT, 2021, 233 (233)
  • [32] A novel hybrid method integrating multi-objective optimization with emergy analysis for building renewal strategy
    Cui, Wenjing
    Liu, Guiwen
    Hong, Jingke
    Li, Kaijian
    ENERGY CONVERSION AND MANAGEMENT, 2024, 315
  • [33] Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system
    Wu, Zhangxiang
    Wang, Xiaoyan
    Sha, Li
    Li, Xiaoqiong
    Yang, Xiaochen
    Ma, Xuelian
    Zhang, Yufeng
    ENERGY, 2021, 223
  • [34] Efficient waste heat recovery of a hybrid solar-biogas-fueled gas turbine cycle for poly-generation purpose: 4E analysis, parametric study, and multi-objective optimization
    Zhou, Jincheng
    Zoghi, Mohammad
    Abed, Hooman
    FUEL, 2023, 333
  • [35] Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose
    Hai, Tao
    Zoghi, Mohammad
    Abed, Hooman
    Chauhan, Bhupendra Singh
    Ahmed, Ahmed Najat
    ENERGY, 2023, 268
  • [36] Thermodynamic analysis and multi-objective optimization of a novel power/cooling cogeneration system for low-grade heat sources
    Yin, Jiqiang
    Yu, Zeting
    Zhang, Chenghui
    Tian, Minli
    Han, Jitian
    ENERGY CONVERSION AND MANAGEMENT, 2018, 166 : 64 - 73
  • [37] Performance analysis and multi-objective optimization of the offshore renewable energy powered integrated energy supply system
    Zhao, Yuan
    Yuan, Han
    Zhang, Zhixiang
    Gao, Qizhi
    ENERGY CONVERSION AND MANAGEMENT, 2024, 304
  • [38] Performance analysis and multi-objective optimization of a combined system of Brayton cycle and compression energy storage based on supercritical carbon dioxide
    Lu, Mengqi
    Du, Yadong
    Yang, Ce
    Zhang, Zhiqiang
    Wang, Haimei
    Sun, Shijun
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [39] Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system
    Razmi, Amir Reza
    Arabkoohsar, Ahmad
    Nami, Hossein
    ENERGY, 2020, 210
  • [40] Marine temperature and humidity regulation combined system: performance analysis and multi-objective optimization
    Wang, Zhe
    Cao, Menglong
    Tang, Haobo
    Dong, Bo
    Ji, Yulong
    Han, Fenghui
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 56