DASH: Dynamic Attention-Based Substructure Hierarchy for Partial Charge Assignment

被引:8
作者
Lehner, Marc T. [1 ]
Katzberger, Paul [1 ]
Maeder, Niels [1 ]
Schiebroek, Carl C. G. [1 ]
Teetz, Jakob [1 ]
Landrum, Gregory A. [1 ]
Riniker, Sereina [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
POTENTIAL-ENERGY FUNCTIONS; MOLECULAR-FORCE FIELD; ATOMIC CHARGES; BASIS-SETS; QUALITY; DENSITY; PARAMETERIZATION; GENERATION; EFFICIENT; MODEL;
D O I
10.1021/acs.jcim.3c00800
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We present a robust and computationally efficient approach for assigning partial charges of atoms in molecules. The method is based on a hierarchical tree constructed from attention values extracted from a graph neural network (GNN), which was trained to predict atomic partial charges from accurate quantum-mechanical (QM) calculations. The resulting dynamic attention-based substructure hierarchy (DASH) approach provides fast assignment of partial charges with the same accuracy as the GNN itself, is software-independent, and can easily be integrated in existing parametrization pipelines, as shown for the Open force field (OpenFF). The implementation of the DASH workflow, the final DASH tree, and the training set are available as open source/open data from public repositories.
引用
收藏
页码:6014 / 6028
页数:15
相关论文
共 64 条
  • [1] [Anonymous], 2017, arXiv
  • [2] [Anonymous], 2022, Amber 2022
  • [3] [Anonymous], 2023, GPT4 Technical Report
  • [4] GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions
    Bannwarth, Christoph
    Ehlert, Sebastian
    Grimme, Stefan
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (03) : 1652 - 1671
  • [5] MONTE-CARLO STUDIES OF DIELECTRIC PROPERTIES OF WATER-LIKE MODELS
    BARKER, JA
    WATTS, RO
    [J]. MOLECULAR PHYSICS, 1973, 26 (03) : 789 - 792
  • [6] A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL
    BAYLY, CI
    CIEPLAK, P
    CORNELL, WD
    KOLLMAN, PA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) : 10269 - 10280
  • [7] Four Generations of High-Dimensional Neural Network Potentials
    Behler, Joerg
    [J]. CHEMICAL REVIEWS, 2021, 121 (16) : 10037 - 10072
  • [8] The ChEMBL bioactivity database: an update
    Bento, A. Patricia
    Gaulton, Anna
    Hersey, Anne
    Bellis, Louisa J.
    Chambers, Jon
    Davies, Mark
    Krueger, Felix A.
    Light, Yvonne
    Mak, Lora
    McGlinchey, Shaun
    Nowotka, Michal
    Papadatos, George
    Santos, Rita
    Overington, John P.
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) : D1083 - D1090
  • [9] Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations
    Bleiziffer, Patrick
    Schaller, Kay
    Riniker, Sereina
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (03) : 579 - 590
  • [10] Development and Benchmarking of Open Force Field 2.0.0: The Sage Small Molecule Force Field
    Boothroyd, Simon
    Behara, Pavan Kumar
    Madin, Owen C.
    Hahn, David F.
    Jang, Hyesu
    Gapsys, Vytautas
    Wagner, Jeffrey R.
    Horton, Joshua T.
    Dotson, David L.
    Thompson, Matthew W.
    Maat, Jessica
    Gokey, Trevor
    Wang, Lee-Ping
    Cole, Daniel J.
    Gilson, Michael K.
    Chodera, John D.
    Bayly, Christopher I.
    Shirts, Michael R.
    Mobley, David L.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (11) : 3251 - 3275