High-Performance Graphene Biocomposite Enabled by Fe3+ Coordination for Thermal Management

被引:4
作者
He, Xuhua [1 ]
Wang, Ying [1 ]
Yang, Peng [1 ]
Lin, Lin [1 ]
Liu, Shizhuo [1 ]
Shao, Zhipeng [1 ]
Zhang, Kai [1 ]
Yao, Yagang [1 ]
机构
[1] Coll Engn & Appl Sci, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; biocomposites; thermalmanagement; thermal conductivity; cellulose nanofibers; INTERFACE MATERIALS; CELLULOSE; CONDUCTIVITY; FILM; MXENE;
D O I
10.1021/acsami.3c10894
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Emerging biocomposites with excellent heat dissipation capabilities and inherent sustainability are urgently needed to address the cooling issues of modern electronics and growing environmental concerns. However, the moisture stability, mechanical performance, thermal conductivity, and even flame retardancy of biomass-based materials are generally insufficient for practical thermal management applications. Herein, we present a high-performance graphene biocomposite consisting of carboxylated cellulose nanofibers and graphene nanosheets through an evaporation-induced self-assembly and subsequent Fe3+ cross-linking strategy. The Fe3+ coordination plays a critical role in stabilizing the material structure, thereby improving the mechanical strength and water stability of the biocomposite films, and its effect is revealed by density functional theory calculations. The hierarchical structure of the biocomposite films also leads to a high in-plane thermal conductivity of 42.5 W m(-1) K-1, enabling a superior heat transfer performance. Furthermore, the resultant biocomposite films exhibit outstanding Joule heating performance with a fast thermal response and long-term stability, improved thermal stability, and flame retardancy. Therefore, such a general strategy and the desired overall properties of the biocomposite films offer wide application prospects for functional and safe thermal management.
引用
收藏
页码:54886 / 54897
页数:12
相关论文
共 66 条
[1]   Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles [J].
Barani, Zahra ;
Mohammadzadeh, Amirmahdi ;
Geremew, Adane ;
Huang, Chun-Yu ;
Coleman, Devin ;
Mangolini, Lorenzo ;
Kargar, Fariborz ;
Balandin, Alexander A. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (08)
[2]   Lightweight, Thermally Insulating, Fire-Proof Graphite-Cellulose Foam [J].
Chen, Chaoji ;
Zhou, Yubing ;
Xie, Weiqi ;
Meng, Taotao ;
Zhao, Xinpeng ;
Pang, Zhenqian ;
Chen, Qiongyu ;
Liu, Dapeng ;
Wang, Ruiliu ;
Yang, Vina ;
Zhang, Huilong ;
Xie, Hua ;
Leiste, Ulrich H. H. ;
Fourney, William L. L. ;
He, Shuaiming ;
Cai, Zhiyong ;
Ma, Zhenqiang ;
Li, Teng ;
Hu, Liangbing .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (06)
[3]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[4]   Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability [J].
Chen, Jin ;
Huang, Xingyi ;
Sun, Bin ;
Jiang, Pingkai .
ACS NANO, 2019, 13 (01) :337-345
[5]   Scalable, Robust, Low-Cost, and Highly Thermally Conductive Anisotropic Nanocomposite Films for Safe and Efficient Thermal Management [J].
Chen, Qiang ;
Ma, Zhewen ;
Wang, Zhengzhou ;
Liu, Lei ;
Zhu, Menghe ;
Lei, Weiwei ;
Song, Pingan .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (08)
[6]   Tropocollagen-Inspired Hierarchical Spiral Structure of Organic Fibers in Epoxy Bulk for 3D High Thermal Conductivity [J].
Chen, Xin ;
Wu, Kai ;
Zhang, Yongzheng ;
Liu, Dingyao ;
Li, Runlai ;
Fu, Qiang .
ADVANCED MATERIALS, 2022, 34 (40)
[7]   Thermally Conductive but Electrically Insulating Polybenzazole Nanofiber/Boron Nitride Nanosheets Nanocomposite Paper for Heat Dissipation of 5G Base Stations and Transformers [J].
Chen, Yu ;
Zhang, Honggang ;
Chen, Jie ;
Guo, Yiting ;
Jiang, Pingkai ;
Gao, Feng ;
Bao, Hua ;
Huang, Xingyi .
ACS NANO, 2022, 16 (09) :14323-14333
[8]   A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor [J].
Fu, Haocheng ;
Wang, Bin ;
Li, Jinpeng ;
Xu, Jun ;
Li, Jun ;
Zeng, Jinsong ;
Gao, Wenhua ;
Chen, Kefu .
MATERIALS HORIZONS, 2022, 9 (05) :1412-1421
[9]   Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity [J].
Gao, Jingyao ;
Yan, Qingwei ;
Lv, Le ;
Tan, Xue ;
Ying, Junfeng ;
Yang, Ke ;
Yu, Jinhong ;
Du, Shiyu ;
Wei, Qiuping ;
Xiang, Rong ;
Yao, Yagang ;
Zeng, Xiaoliang ;
Sun, Rong ;
Wong, Ching-Ping ;
Jiang, Nan ;
Lin, Cheng-Te ;
Dai, Wen .
CHEMICAL ENGINEERING JOURNAL, 2021, 419
[10]   A Multifunctional Flexible Composite Film with Excellent Multi-Source Driven Thermal Management, Electromagnetic Interference Shielding, and Fire Safety Performance, Inspired by a "Brick-Mortar" Sandwich Structure [J].
Gong, Shang ;
Sheng, Xinxin ;
Li, Xiaolong ;
Sheng, Mengjie ;
Wu, Hao ;
Lu, Xiang ;
Qu, Jinping .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (26)