Tumor Microenvironment-Responsive One-for-All Molecular-Engineered Nanoplatform Enables NIR-II Fluorescence Imaging-Guided Combinational Cancer Therapy

被引:14
作者
Wu, Gui-long [1 ,2 ]
Liu, Fen [1 ,2 ,3 ]
Li, Na [1 ,2 ]
Wang, Feirong [1 ,2 ]
Yang, Sha [1 ,2 ]
Wu, Fan [1 ,2 ]
Xiao, Hao [1 ,2 ]
Wang, Minghui [1 ,2 ]
Deng, Sanling [1 ,2 ]
Kuang, Xin [1 ,2 ]
Fu, Qian [1 ,2 ]
Wu, Peixian [1 ,2 ]
Kang, Qiang [1 ,2 ]
Sun, Lijuan [1 ,2 ]
Li, Zelong [1 ,2 ]
Lin, Nanyun [1 ,2 ]
Wu, Yinyin [1 ,2 ]
Tan, Senyou [1 ,2 ]
Chen, Guodong [1 ,2 ]
Tan, Xiaofeng [1 ,2 ,4 ]
Yang, Qinglai [1 ,2 ,4 ,5 ]
机构
[1] Univ South China, Affiliated Hosp 1, Hengyang Med Sch, Dept Hepatopancreatobiliary Surg, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Canc Res Inst, Ctr Mol Imaging Probe, Hengyang Med Sch, Hengyang 421001, Hunan, Peoples R China
[3] Univ South China, Affiliated Hosp 2, Hengyang Med Sch, Dept Radiol, Hengyang 421001, Peoples R China
[4] Univ South China, Hengyang Med Sch, MOE Key Lab Rare Pediat Dis, Hengyang 421001, Hunan, Peoples R China
[5] Hunan Prov Maternal & Child Hlth Care Hosp, Key Lab Birth Defect Res & Prevent, Natl Hlth Commiss, Changsha 410008, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; FERROPTOSIS;
D O I
10.1021/acs.analchem.3c03827
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The activable NIR-based phototheranostic nanoplatform (NP) is considered an efficient and reliable tumor treatment due to its strong targeting ability, flexible controllability, minimal side effects, and ideal therapeutic effect. This work describes the rational design of a second near-infrared (NIR-II) fluorescence imaging-guided organic phototheranostic NP (FTEP-TBFc NP). The molecular-engineered phototheranostic NP has a sensitive response to glutathione (GSH), generating hydrogen sulfide (H2S) gas, and delivering ferrocene molecules in the tumor microenvironment (TME). Under 808 nm irradiation, FTEP-TBFc could not only simultaneously generate fluorescence, heat, and singlet oxygen but also greatly enhance the generation of reactive oxygen species to improve chemodynamic therapy (CDT) and photodynamic therapy (PDT) at a biosafe laser power of 0.33 W/cm(2). H2S inhibits the activity of catalase and cytochrome c oxidase (COX IV) to cause the enhancement of CDT and hypothermal photothermal therapy (HPTT). Moreover, the decreased intracellular GSH concentration further increases CDT's efficacy and downregulates glutathione peroxidase 4 (GPX4) for the accumulation of lipid hydroperoxides, thus causing the ferroptosis process. Collectively, FTEP-TBFc NPs show great potential as a versatile and efficient NP for specific tumor imaging-guided multimodal cancer therapy. This unique strategy provides new perspectives and methods for designing and applying activable biomedical phototheranostics.
引用
收藏
页码:17372 / 17383
页数:12
相关论文
共 51 条
[1]   Poly(vinylferrocene)-Reduced Graphene Oxide as a High Power/High Capacity Cathodic Battery Material [J].
Beladi-Mousavi, Seyyed Mohsen ;
Sadaf, Shamaila ;
Walder, Lorenz ;
Gallei, Markus ;
Ruettiger, Christian ;
Eigler, Siegfried ;
Halbig, Christian E. .
ADVANCED ENERGY MATERIALS, 2016, 6 (12)
[2]   Radioactive Transition Metals for Imaging and Therapy [J].
Boros, Eszter ;
Packard, Alan B. .
CHEMICAL REVIEWS, 2019, 119 (02) :870-901
[3]   Gas-Mediated Cancer Bioimaging and Therapy [J].
Chen, Lichan ;
Zhou, Shu-Feng ;
Su, Lichao ;
Song, Jibin .
ACS NANO, 2019, 13 (10) :10887-10917
[4]   Glutamine Metabolism in Cancer: Understanding the Heterogeneity [J].
Cluntun, Ahmad A. ;
Lukey, Michael J. ;
Cerione, Richard A. ;
Locasale, Jason W. .
TRENDS IN CANCER, 2017, 3 (03) :169-180
[5]   "Trojan Horse" Phototheranostics: Fine-Engineering NIR-II AIEgen Camouflaged by Cancer Cell Membrane for Homologous-Targeting Multimodal Imaging-Guided Phototherapy [J].
Cui, Jie ;
Zhang, Fei ;
Yan, Dingyuan ;
Han, Ting ;
Wang, Lei ;
Wang, Dong ;
Tang, Ben Zhong .
ADVANCED MATERIALS, 2023, 35 (33)
[6]   Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy [J].
Fu, Lian-Hua ;
Wan, Yilin ;
Qi, Chao ;
He, Jin ;
Li, Chunying ;
Yang, Chen ;
Xu, Han ;
Lin, Jing ;
Huang, Peng .
ADVANCED MATERIALS, 2021, 33 (07)
[7]   Role of Mitochondria in Ferroptosis [J].
Gao, Minghui ;
Yi, Junmei ;
Zhu, Jiajun ;
Minikes, Alexander M. ;
Monian, Prashant ;
Thompson, Craig B. ;
Jiang, Xuejun .
MOLECULAR CELL, 2019, 73 (02) :354-+
[8]   Evaluation of Structure-Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria [J].
Kang, Miaomiao ;
Zhou, Chengcheng ;
Wu, Shuangmei ;
Yu, Bingran ;
Zhang, Zhijun ;
Song, Nan ;
Lee, Michelle Mei Suet ;
Xu, Wenhan ;
Xu, Fu-Jian ;
Wang, Dong ;
Wang, Lei ;
Tang, Ben Zhong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (42) :16781-16789
[9]   Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth [J].
Kim, Sung Eun ;
Zhang, Li ;
Ma, Kai ;
Riegman, Michelle ;
Chen, Feng ;
Ingold, Irina ;
Conrad, Marcus ;
Turker, Melik Ziya ;
Gao, Minghui ;
Jiang, Xuejun ;
Monette, Sebastien ;
Pauliah, Mohan ;
Gonen, Mithat ;
Zanzonico, Pat ;
Quinn, Thomas ;
Wiesner, Ulrich ;
Bradbury, Michelle S. ;
Overholtzer, Michael .
NATURE NANOTECHNOLOGY, 2016, 11 (11) :977-985
[10]   New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates [J].
Li, Xingshu ;
Peng, Xiao-Hui ;
Zheng, Bing-De ;
Tang, Jilin ;
Zhao, Yuanyuan ;
Zheng, Bi-Yuan ;
Ke, Mei-Rong ;
Huang, Jian-Dong .
CHEMICAL SCIENCE, 2018, 9 (08) :2098-2104