LOCAL EXISTENCE FOR A VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH THE DISPERSIVE TERM, INTERNAL DAMPING, AND LOGARITHMIC NONLINEARITY

被引:2
作者
Cordeiro, Sebastiao [1 ]
Raposo, Carlos [2 ]
Ferreira, Jorge [3 ]
Rocha, Daniel [4 ]
Shahrouzi, Mohammad [5 ]
机构
[1] Fed Univ Para, Fac Exact Sci & Technol, R Manoel Abreu, BR-68440000 Abaetetuba, Para, Brazil
[2] Fed Univ Bahia Dept, Dept Math, Ave Milton Santos, BR-40170110 Salvador, BA, Brazil
[3] Fed Fluminense Univ, Dept Exact Sci, Ave Trabalhadores, BR-27255125 Rio De Janeiro, Brazil
[4] Fed Univ Para, Inst Exact & Nat Sci, R Augusto Correa, BR-66075110 Belem, Para, Brazil
[5] Jahrom Univ, Dept Math, GJPJ 8PW, Jahrom 7413766171, Fars Province, Iran
关键词
viscoelastic equation; dispersive term; logarithmic nonlinearity; local existence; GLOBAL EXISTENCE; STABILITY;
D O I
10.7494/OpMath.2024.44.1.19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a viscoelastic Kirchhoff-type equation with the dispersive term, internal damping, and logarithmic nonlinearity. We prove the local existence of a weak solution via a modified lemma of contraction of the Banach fixed-point theorem. Although the uniqueness of a weak solution is still an open problem, we proved uniqueness locally for specifically suitable exponents. Furthermore, we established a result for local existence without guaranteeing uniqueness, stating a contraction lemma.
引用
收藏
页码:19 / 47
页数:29
相关论文
共 28 条
  • [21] Global existence and uniform stability of solutions for a quasilinear viscoelastic problem
    Messaoudi, Salim A.
    Tatar, Nasser-eddine
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (06) : 665 - 680
  • [22] Global Existence of Solutions for the Viscoelastic Kirchhoff Equation with Logarithmic Source Terms
    Mezouar, Nadia
    Boulaaras, Salah Mahmoud
    Allahem, Ali
    [J]. COMPLEXITY, 2020, 2020
  • [23] Nishihara K., 1984, TOKYO J MATH, V7, P437
  • [24] Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms
    Pan, Ning
    Pucci, Patrizia
    Xu, Runzhang
    Zhang, Binlin
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2019, 19 (03) : 615 - 643
  • [25] Pohozaev S. I., 1975, MATH USSR SB, V25, P145, DOI DOI 10.1070/SM1975V025N01ABEH002203
  • [26] Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation
    Wang, Xingchang
    Xu, Runzhang
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 261 - 288
  • [27] Kirchhoff-type system with linear weak damping and logarithmic nonlinearities
    Wang, Xingchang
    Chen, Yuxuan
    Yang, Yanbing
    Li, Jiaheng
    Xu, Runzhang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 475 - 499
  • [28] Weir A.J, 1973, Lebesque Integration and Measure, Reader in Mathematics and Education