LOCAL EXISTENCE FOR A VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH THE DISPERSIVE TERM, INTERNAL DAMPING, AND LOGARITHMIC NONLINEARITY

被引:2
作者
Cordeiro, Sebastiao [1 ]
Raposo, Carlos [2 ]
Ferreira, Jorge [3 ]
Rocha, Daniel [4 ]
Shahrouzi, Mohammad [5 ]
机构
[1] Fed Univ Para, Fac Exact Sci & Technol, R Manoel Abreu, BR-68440000 Abaetetuba, Para, Brazil
[2] Fed Univ Bahia Dept, Dept Math, Ave Milton Santos, BR-40170110 Salvador, BA, Brazil
[3] Fed Fluminense Univ, Dept Exact Sci, Ave Trabalhadores, BR-27255125 Rio De Janeiro, Brazil
[4] Fed Univ Para, Inst Exact & Nat Sci, R Augusto Correa, BR-66075110 Belem, Para, Brazil
[5] Jahrom Univ, Dept Math, GJPJ 8PW, Jahrom 7413766171, Fars Province, Iran
关键词
viscoelastic equation; dispersive term; logarithmic nonlinearity; local existence; GLOBAL EXISTENCE; STABILITY;
D O I
10.7494/OpMath.2024.44.1.19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a viscoelastic Kirchhoff-type equation with the dispersive term, internal damping, and logarithmic nonlinearity. We prove the local existence of a weak solution via a modified lemma of contraction of the Banach fixed-point theorem. Although the uniqueness of a weak solution is still an open problem, we proved uniqueness locally for specifically suitable exponents. Furthermore, we established a result for local existence without guaranteeing uniqueness, stating a contraction lemma.
引用
收藏
页码:19 / 47
页数:29
相关论文
共 28 条
  • [1] INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS
    BARROW, JD
    PARSONS, P
    [J]. PHYSICAL REVIEW D, 1995, 52 (10): : 5576 - 5587
  • [2] Brezis H, 2011, UNIVERSITEXT, P1
  • [3] Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Lasiecka, Irena
    Webler, Claudete M.
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) : 121 - 145
  • [4] Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity
    Chen, Yuxuan
    Xu, Runzhang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [5] Coddington E.A., 1955, Theory of ordinary differential equations
  • [6] A well posedness result for nonlinear viscoelastic equations with memory
    Conti, Monica
    Marchini, Elsa M.
    Pata, Vittorino
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 206 - 216
  • [7] Cordeiro S., 2021, Partial Differ. Equ. Appl. Math, V3, P100018, DOI [10.1016/j.padiff.2020.100018, DOI 10.1016/J.PADIFF.2020.100018]
  • [8] Global existence and asymptotic behavior for a Timoshenko system with internal damping and logarithmic source terms
    Cordeiro, Sebastiao Martins Siqueira
    Pereira, Ducival Carvalho
    Baldez, Carlos Alessandro da Costa
    da Cunha, Carlos Alberto Raposo
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 105 - 118
  • [9] DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
  • [10] Q-balls and baryogenesis in the MSSM
    Enqvist, K
    McDonald, J
    [J]. PHYSICS LETTERS B, 1998, 425 (3-4) : 309 - 321