The Value of Applying Machine Learning in Predicting the Time of Symptom Onset in Stroke Patients: Systematic Review and Meta-Analysis

被引:5
作者
Feng, Jing [1 ]
Zhang, Qizhi [1 ]
Wu, Feng [2 ]
Peng, Jinxiang [3 ]
Li, Ziwei [4 ]
Chen, Zhuang [5 ]
机构
[1] Fifth Peoples Hosp Jinan, Dept Neurol, Jinan, Peoples R China
[2] Cent Hosp Enshi Tujia & Miao Autonomous Prefecture, Dept Pulm Dis & Diabet Mellitus, Enshi, Peoples R China
[3] Hubei Enshi Coll, Med Dept, Enshi, Peoples R China
[4] Shandong Univ Tradit Chinese Med, Expt Ctr, Jinan, Peoples R China
[5] Fifth Peoples Hosp Jinan, Dept Cardiovasc Med, 24297 Jingshi Rd, Jinan 250000, Peoples R China
关键词
machine learning; ischemic stroke; onset time; stroke; ATTENUATED INVERSION-RECOVERY; ACUTE ISCHEMIC-STROKE; MECHANICAL THROMBECTOMY OUTCOMES; INTRAVENOUS THROMBOLYSIS; ARTIFICIAL-INTELLIGENCE; IDENTIFY STROKE; IDENTIFICATION; MISMATCH; RISK; DEEP;
D O I
10.2196/44895
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Machine learning is a potentially effective method for identifying and predicting the time of the onset of stroke. However, the value of applying machine learning in this field remains controversial and debatable. Objective: We aimed to assess the value of applying machine learning in predicting the time of stroke onset. Methods: PubMed, Web of Science, Embase, and Cochrane were comprehensively searched. The C index and sensitivity with 95% CI were used as effect sizes. The risk of bias was evaluated using PROBAST (Prediction Model Risk of Bias Assessment Tool), and meta-analysis was conducted using R (version 4.2.0; R Core Team). Results: Thirteen eligible studies were included in the meta-analysis involving 55 machine learning models with 41 models in the training set and 14 in the validation set. The overall C index was 0.800 (95% CI 0.773-0.826) in the training set and 0.781 (95% CI 0.709-0.852) in the validation set. The sensitivity and specificity were 0.76 (95% CI 0.73-0.80) and 0.79 (95% CI 0.74-0.82) in the training set and 0.81 (95% CI 0.68-0.90) and 0.83 (95% CI 0.73-0.89) in the validation set, respectively. Subgroup analysis revealed that the accuracy of machine learning in predicting the time of stroke onset within 4.5 hours was optimal (training: 0.80, 95% CI 0.77-0.83; validation: 0.79, 95% CI 0.71-0.86). Conclusions: Machine learning has ideal performance in identifying the time of stroke onset. More reasonable image segmentation and texture extraction methods in radiomics should be used to promote the value of applying machine learning in diverse ethnic backgrounds.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review [J].
Campagnini, Silvia ;
Arienti, Chiara ;
Patrini, Michele ;
Liuzzi, Piergiuseppe ;
Mannini, Andrea ;
Carrozza, Maria Chiara .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2022, 19 (01)
[2]   Extending thrombolysis to 4.5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data [J].
Campbell, Bruce C., V ;
Ma, Henry ;
Ringleb, Peter A. ;
Parsons, Mark W. ;
Churilov, Leonid ;
Bendszus, Martin ;
Levi, Christopher R. ;
Hsu, Chung ;
Kleinig, Timothy J. ;
Fatar, Marc ;
Leys, Didier ;
Molina, Carlos ;
Wijeratne, Tissa ;
Curtze, Sami ;
Dewey, Helen M. ;
Barber, P. Alan ;
Butcher, Kenneth S. ;
De Silva, Deidre A. ;
Bladin, Christopher F. ;
Yassi, Nawaf ;
Pfaff, Johannes A. R. ;
Sharma, Gagan ;
Bivard, Andrew ;
Desmond, Patricia M. ;
Schwab, Stefan ;
Schellinger, Peter D. ;
Yan, Bernard ;
Mitchell, Peter J. ;
Serena, Joaquin ;
Toni, Danilo ;
Thijs, Vincent ;
Hacke, Werner ;
Davis, Stephen M. ;
Donnan, Geoffrey A. .
LANCET, 2019, 394 (10193) :139-147
[3]   The future of neuroprotection in stroke [J].
Chamorro, Angel ;
Lo, Eng H. ;
Ren, Arturo ;
van Leyden, Klaus ;
Lyden, Patrick D. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2021, 92 (02) :129-135
[4]   Stroke risk prediction using machine learning: a prospective cohort study of 0.5 million Chinese adults [J].
Chun, Matthew ;
Clarke, Robert ;
Cairns, Benjamin J. ;
Clifton, David ;
Bennett, Derrick ;
Chen, Yiping ;
Guo, Yu ;
Pei, Pei ;
Lv, Jun ;
Yu, Canqing ;
Yang, Ling ;
Li, Liming ;
Chen, Zhengming ;
Zhu, Tingting .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (08) :1719-1727
[5]   A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes [J].
Debray, Thomas P. A. ;
Damen, Johanna A. A. G. ;
Riley, Richard D. ;
Snell, Kym ;
Reitsma, Johannes B. ;
Hooft, Lotty ;
Collins, Gary S. ;
Moons, Karel G. M. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (09) :2768-2786
[6]   Fluid-Attenuated Inversion Recovery Evolution Within 12 Hours From Stroke Onset A Reliable Tissue Clock? [J].
Ebinger, Martin ;
Galinovic, Ivana ;
Rozanski, Michal ;
Brunecker, Peter ;
Endres, Matthias ;
Fiebach, Jochen B. .
STROKE, 2010, 41 (02) :250-255
[7]   Can Diffusion-Weighted Imaging-Fluid-Attenuated Inversion Recovery Mismatch (Positive Diffusion-Weighted Imaging/Negative Fluid-Attenuated Inversion Recovery) at 3 Tesla Identify Patients With Stroke at <4.5 Hours? [J].
Emeriau, Samuel ;
Serre, Isabelle ;
Toubas, Olivier ;
Pombourcq, Francis ;
Oppenheim, Catherine ;
Pierot, Laurent .
STROKE, 2013, 44 (06) :1647-1651
[8]   Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J].
Feigin, Valery L. ;
Nichols, Emma ;
Alam, Tahiya ;
Bannick, Marlena S. ;
Beghi, Ettore ;
Blake, Natacha ;
Culpepper, William J. ;
Dorsey, E. Ray ;
Elbaz, Alexis ;
Ellenbogen, Richard G. ;
Fisher, James L. ;
Fitzmaurice, Christina ;
Giussani, Giorgia ;
Glennie, Linda ;
James, Spencer L. ;
Johnson, Catherine Owens ;
Kassebaum, Nicholas J. ;
Logroscino, Giancarlo ;
Marin, Benoit ;
Mountjoy-Venning, W. Cliff ;
Minh Nguyen ;
Ofori-Asenso, Richard ;
Patel, Anoop P. ;
Piccininni, Marco ;
Roth, Gregory A. ;
Steiner, Timothy J. ;
Stovner, Lars Jacob ;
Szoeke, Cassandra E. I. ;
Theadom, Alice ;
Vollset, Stein Emil ;
Wallin, Mitchell Taylor ;
Wright, Claire ;
Zunt, Joseph Raymond ;
Abbasi, Nooshin ;
Abd-Allah, Foad ;
Abdelalim, Ahmed ;
Abdollahpour, Ibrahim ;
Aboyans, Victor ;
Abraha, Haftom Niguse ;
Acharya, Dilaram ;
Adamu, Abdu A. ;
Adebayo, Oladimeji M. ;
Adeoye, Abiodun Moshood ;
Adsuar, Jose C. ;
Afarideh, Mohsen ;
Agrawal, Sutapa ;
Ahmadi, Alireza ;
Ahmed, Muktar Beshir ;
Aichour, Amani Nidhal ;
Aichour, Ibtihel .
LANCET NEUROLOGY, 2019, 18 (05) :459-480
[9]   Mechanical Thrombectomy Outcomes With or Without Intravenous Thrombolysis Insight From the ASTER Randomized Trial [J].
Gariel, Florent ;
Lapergue, Bertrand ;
Bourcier, Romain ;
Berge, Jerome ;
Barreau, Xavier ;
Mazighi, Mikael ;
Kyheng, Maeva ;
Labreuche, Julien ;
Fahed, Robert ;
Blanc, Raphael ;
Gory, Benjamin ;
Duhamel, Alain ;
Saleme, Suzana ;
Costalat, Vincent ;
Bracard, Serge ;
Desal, Hubert ;
Detraz, Lili ;
Consoli, Arturo ;
Piotin, Michel ;
Marnat, Gaultier .
STROKE, 2018, 49 (10) :2383-2390
[10]   Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke [J].
Heo, JoonNyung ;
Yoon, Jihoon G. ;
Park, Hyungjong ;
Kim, Young Dae ;
Nam, Hyo Suk ;
Heo, Ji Hoe .
STROKE, 2019, 50 (05) :1263-1265