ARNOLD DIFFUSION IN MULTIDIMENSIONAL CONVEX BILLIARDS

被引:6
作者
Clarke, Andrew [1 ]
Turaev, Dmitry [2 ]
机构
[1] Univ Barcelona UB, Barcelona, Spain
[2] Imperial Coll, London, England
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会; 欧洲研究理事会;
关键词
POSITIVE TOPOLOGICAL-ENTROPY; HAMILTONIAN-SYSTEMS; UNBOUNDED ENERGY; GEODESIC-FLOWS; PERIODIC PERTURBATIONS; ASYMPTOTIC STABILITY; TWIST MAPS; ORBITS; GROWTH; INSTABILITY;
D O I
10.1215/00127094-2022-0073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider billiard dynamics in a strictly convex domain, and consider a trajectory that begins with the velocity vector making a small positive angle with the boundary. Lazutkin proved that in two dimensions, it is impossible for this angle to tend to zero along trajectories. We prove that such trajectories can exist in higher dimensions. Namely, using the geometric techniques of Arnold diffusion, we show that in three or more dimensions, assuming the geodesic flow on the boundary of the domain has a hyperbolic periodic orbit and a transverse homoclinic, the existence of trajectories asymptotically approaching the billiard boundary is a generic phenomenon in the real-analytic topology.
引用
收藏
页码:1813 / 1878
页数:66
相关论文
共 47 条
[1]  
[Anonymous], 2002, Contemp. Math., Amer. Math. Soc., DOI DOI 10.1090/CONM/292/04922
[2]  
ARNOLD V. I., 1828, Grad. Texts in Math., V60
[3]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
[4]  
BERGER M., 1816, Bull. Soc. Math. France, V123, P107
[5]  
BIRKHOFF G. D., 1819, Amer. Math. Soc. Colloq. Publ., V9
[6]   Unbounded growth of energy in nonautonomous Hamiltonian systems [J].
Bolotin, S ;
Treschev, D .
NONLINEARITY, 1999, 12 (02) :365-388
[7]   FROM A DIFFERENTIABLE TO A REAL ANALYTIC PERTURBATION-THEORY, APPLICATIONS TO THE KUPKA SMALE THEOREMS [J].
BROER, HW ;
TANGERMAN, FM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :345-362
[8]  
Cheng CQ, 2004, J DIFFER GEOM, V67, P457, DOI 10.4310/jdg/1102091356
[9]  
CHERNOV N., 2006, MATH SURVEYS MONOGRA, V127
[10]   GENERIC PROPERTIES OF GEODESIC FLOWS ON ANALYTIC HYPERSURFACES OF EUCLIDEAN SPACE [J].
Clarke, Andrew .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, :5839-5868