FINITE-ELEMENT DOMAIN APPROXIMATION FOR MAXWELL VARIATIONAL PROBLEMS ON CURVED DOMAINS

被引:2
作者
Aylwin, Ruben [1 ]
Jerez-Hanckes, Carlos [1 ]
机构
[1] Univ Adolfo Ibanez, Fac Engn & Sci, Santiago 7941169, RM, Chile
关键词
Ne'; de'; lec finite elements; curl-conforming elements; Maxwell equations; proximation; Strang lemma; DISCONTINUOUS GALERKIN METHODS; H-P VERSION; NUMERICAL-INTEGRATION; DIRICHLET PROBLEMS; BOUNDARY; EQUATIONS;
D O I
10.1137/21M1468772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of domain approximation in finite element methods for Maxwell equations on general curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest and an exact parametrization of the surface may not be readily available. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact mesh. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions---in the approximate domains---to the continuous one in the original domain. Moreover, we present numerical results validating our claims.
引用
收藏
页码:1139 / 1171
页数:33
相关论文
共 50 条
  • [41] Hybrid Finite Element Method and Variational Theory of Complex Rays for Helmholtz Problems
    Li, Hao
    Ladeveze, Pierre
    Riou, Herve
    [J]. JOURNAL OF COMPUTATIONAL ACOUSTICS, 2016, 24 (04)
  • [42] A generalized mass lumping technique for vector finite-element solutions of the time-dependent Maxwell equations
    Fisher, A
    Rieben, RN
    Rodrigue, GH
    White, DA
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (09) : 2900 - 2910
  • [43] AN OPERATOR METHOD FOR A NUMERICAL QUADRATURE FINITE-ELEMENT APPROXIMATION FOR A CLASS OF 2ND-ORDER ELLIPTIC EIGENVALUE PROBLEMS IN COMPOSITE STRUCTURES
    VANMAELE, M
    VANKEER, R
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (03): : 339 - 365
  • [44] Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell's system
    Beilina, Larisa
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (04): : 702 - 733
  • [45] Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method
    Turk, Onder
    [J]. MECCANICA, 2020, 55 (10) : 2021 - 2031
  • [46] STABILITY, ANALYTICITY, AND MAXIMAL REGULARITY FOR PARABOLIC FINITE ELEMENT PROBLEMS ON SMOOTH DOMAINS
    Kashiwabara, Takahito
    Kemmochi, Tomoya
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (324) : 1647 - 1679
  • [47] On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains
    Feistauer M.
    Najzar K.
    Sobotíková V.
    [J]. Applications of Mathematics, 2001, 46 (5) : 353 - 382
  • [48] High spatial order finite element method to solve Maxwell's equations in time domain
    Pernet, S
    Ferrieres, X
    Cohen, G
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (09) : 2889 - 2899
  • [49] Finite element approximation for Maxwell?s equations with Debye memory under a nonlinear boundary feedback with delay
    Yao, C. H.
    Fan, H. J.
    Zhao, Y. M.
    Tang, Y. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [50] The finite-element time-domain method for elastic band-structure calculations
    Cebrecos, Alejandro
    Krattiger, Dimitri
    Sanchez-Morcillo, Victor J.
    Romero-Garcia, Vicent
    Hussein, Mahmoud I.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2019, 238 : 77 - 87