FINITE-ELEMENT DOMAIN APPROXIMATION FOR MAXWELL VARIATIONAL PROBLEMS ON CURVED DOMAINS

被引:2
作者
Aylwin, Ruben [1 ]
Jerez-Hanckes, Carlos [1 ]
机构
[1] Univ Adolfo Ibanez, Fac Engn & Sci, Santiago 7941169, RM, Chile
关键词
Ne'; de'; lec finite elements; curl-conforming elements; Maxwell equations; proximation; Strang lemma; DISCONTINUOUS GALERKIN METHODS; H-P VERSION; NUMERICAL-INTEGRATION; DIRICHLET PROBLEMS; BOUNDARY; EQUATIONS;
D O I
10.1137/21M1468772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of domain approximation in finite element methods for Maxwell equations on general curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest and an exact parametrization of the surface may not be readily available. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact mesh. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions---in the approximate domains---to the continuous one in the original domain. Moreover, we present numerical results validating our claims.
引用
收藏
页码:1139 / 1171
页数:33
相关论文
共 50 条
  • [31] Cascading Multilevel Finite-Element Analysis for Local and Nonlocal Parabolic Problems
    Ma, Jingtang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (04) : 436 - 452
  • [32] A PRIORI ESTIMATES AND OPTIMAL FINITE ELEMENT APPROXIMATION OF THE MHD FLOW IN SMOOTH DOMAINS
    He, Yinnian
    Zou, Jun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01): : 181 - 206
  • [33] Finite Element Approximation of the Spectrum of the Curl Operator in a Multiply Connected Domain
    Alonso-Rodriguez, A.
    Camano, J.
    Rodriguez, R.
    Valli, A.
    Venegas, P.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (06) : 1493 - 1533
  • [34] A finite-element approach in order to avoid ill-conditioning in thin-sheet problems in frequency domain-Application to magneto-quasistatics
    Trommler, Jens
    Koch, Stephan
    Weiland, Thomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4671 - 4680
  • [35] The hp finite element method for singularly perturbed problems in nonsmooth domains
    Xenophontos, C
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 15 (01) : 63 - 89
  • [36] Modeling and Finite Element Formulation for Acoustic Problems Including Rotating Domains
    Kaltenbacher, Manfred
    Hueppe, Andreas
    Grabinger, Jens
    Wohlmuth, Barbara
    AIAA JOURNAL, 2016, 54 (12) : 3768 - 3777
  • [37] Finite element time-domain body-of-revolution Maxwell solver based on discrete exterior calculus
    Na, Dong-Yeop
    Borges, Ben-Hur, V
    Teixeira, Fernando L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 249 - 275
  • [38] The weak Galerkin finite element method for Stokes interface problems with curved interface
    Yang, Lin
    Zhai, Qilong
    Zhang, Ran
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 98 - 122
  • [39] Finite element approximation of elliptic homogenization problems in nondivergence-form
    Capdeboscq, Yves
    Sprekeler, Timo
    Suli, Endre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1221 - 1257
  • [40] Finite element approximation of fractional order elliptic boundary value problems
    Szekeres, Bela J.
    Izsak, Ferenc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 553 - 561