We consider the problem of domain approximation in finite element methods for Maxwell equations on general curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest and an exact parametrization of the surface may not be readily available. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact mesh. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions---in the approximate domains---to the continuous one in the original domain. Moreover, we present numerical results validating our claims.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, IMAS,Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, IMAS,Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Armentano, M. G.
Padra, C.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Atom Bariloche, RA-4800 San Carlos De Bariloche, Rio Negro, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, IMAS,Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Padra, C.
Scheble, M.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Atom Bariloche, RA-4800 San Carlos De Bariloche, Rio Negro, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, IMAS,Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
机构:
Univ Polytech Hauts de France, EA 4015, CNRS, LAMAV,FR 2956, F-59313 Valenciennes, FranceUniv Polytech Hauts de France, EA 4015, CNRS, LAMAV,FR 2956, F-59313 Valenciennes, France
Nicaise, Serge
Tomezyk, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
Univ Polytech Hauts de France, EA 4015, CNRS, LAMAV,FR 2956, F-59313 Valenciennes, FranceUniv Polytech Hauts de France, EA 4015, CNRS, LAMAV,FR 2956, F-59313 Valenciennes, France