FPGA-accelerated deep neural network for real-time inversion of geosteering data

被引:3
作者
Jin, Yuchen [1 ]
Wan, Qiyu [1 ]
Wu, Xuqing [1 ]
Fu, Xin [1 ]
Chen, Jiefu [1 ]
机构
[1] Univ Houston, 4800 Calhoun Rd, Houston, TX 77004 USA
来源
GEOENERGY SCIENCE AND ENGINEERING | 2023年 / 224卷
关键词
Deep learning; Geosteering; Logging while drilling; FPGA;
D O I
10.1016/j.geoen.2023.211610
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We implement an efficient deep learning-based inversion method using the Field Programmable Gate Array (FPGA) to support real-time geosteering. FPGA is a feasible hardware choice for the harsh downhole environ-ment. Traditionally, due to the limitation of downhole computing resources, sensing data are transmitted from the downhole to the surface, and geosteering inversion is performed on the surface. Using a deep neural network (DNN) as the inverse operator, a pre-trained DNN can be implemented on the FPGA. In this paper, we propose a DNN-based inversion method for the geosteering problem and conduct a comprehensive analysis to accelerate the FPGA implementation. The experimental results show that our proposed approach is computationally efficient with high accuracy and low power consumption. Compared to the corresponding CPU (GPU) implementation, our method is 7x (1.4x) more computationally efficient and 82x (1.3x) more energy efficient.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
Albawi S, 2017, I C ENG TECHNOL
[2]   Fast inversion of logging-while-drilling resistivity measurements acquired in multiple wells [J].
Bakr, Shaaban A. ;
Pardo, David ;
Torres-Verdin, Carlos .
GEOPHYSICS, 2017, 82 (03) :E111-E120
[3]   Power estimation and power measurement of Xilinx Virtex FPGAs: Trade-offs and limitations [J].
Becker, J ;
Huebner, M ;
Ullmann, M .
16TH SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI 2003, PROCEEDINGS, 2003, :283-288
[4]  
Bornemann E., 1998, SPWLA ANN LOGG S
[5]  
Boureau Y.L., 2010, P 27 INT C MACH LEAR, P111, DOI DOI 10.5555/3104322.3104338
[6]   DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning [J].
Chen, Tianshi ;
Du, Zidong ;
Sun, Ninghui ;
Wang, Jia ;
Wu, Chengyong ;
Chen, Yunji ;
Temam, Olivier .
ACM SIGPLAN NOTICES, 2014, 49 (04) :269-283
[7]   ShiDianNao: Shifting Vision Processing Closer to the Sensor [J].
Du, Zidong ;
Fasthuber, Robert ;
Chen, Tianshi ;
Ienne, Paolo ;
Li, Ling ;
Luo, Tao ;
Feng, Xiaobing ;
Chen, Yunji ;
Temam, Olivier .
2015 ACM/IEEE 42ND ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2015, :92-104
[8]  
Everitt T.A., 1992, SPE production engineering, V7, P121, DOI [10.2118/18189-PAB, DOI 10.2118/18189-PAB]
[9]   CNP: AN FPGA-BASED PROCESSOR FOR CONVOLUTIONAL NETWORKS [J].
Farabet, Clement ;
Poulet, Cyril ;
Han, Jefferson Y. ;
LeCun, Yann .
FPL: 2009 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2009, :32-+
[10]  
Feng G, 2016, 2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), P624, DOI 10.1109/ICSICT.2016.7998996