SIEVE ESTIMATION OF A CLASS OF PARTIALLY LINEAR TRANSFORMATION MODELS WITH INTERVAL-CENSORED COMPETING RISKS DATA

被引:2
作者
Lu, Xuewen [1 ,4 ]
Wang, Yan [1 ]
Bandyopadhyay, Dipankar [2 ]
Bakoyannis, Giorgos [3 ]
机构
[1] Univ Calgary, Calgary, AB, Canada
[2] Virginia Commonwealth Univ, Richmond, VA USA
[3] Indiana Univ, Indianapolis, IN USA
[4] Univ Calgary, Dept Math & Stat, Calgary, AB 2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Bernstein polynomials; competing risks; cumulative inci-dence function; interval censoring; partially linear transformation model; semipara-metric efficiency; SEMIPARAMETRIC EFFICIENT ESTIMATION; REGRESSION-ANALYSIS; HAZARDS MODEL; INFERENCE; CONVERGENCE; CONSISTENCY; IEDEA;
D O I
10.5705/ss.202021.0051
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of partially linear transformation models with interval -censored competing risks data. Under a semiparametric generalized odds rate spec-ification for the cause-specific cumulative incidence function, we obtain optimal estimators of the large number of parametric and nonparametric model compo-nents by maximizing the likelihood function over a joint B-spline and Bernstein polynomial spanned sieve space. Our specification considers a relatively simpler finite-dimensional parameter space, approximating the infinite-dimensional param-eter space as n & RARR; & INFIN;. This allows us to study the almost sure consistency and rate of convergence for all parameters, and the asymptotic distributions and efficiency of the finite-dimensional components. We study the finite-sample performance of our method using simulation studies under a variety of scenarios. Furthermore, we illustrate our methodology by applying it to a data set on HIV-infected individuals from sub-Saharan Africa.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 38 条
[1]  
[Anonymous], 2001, Classical Competing Risks
[2]   Semiparametric regression on cumulative incidence function with interval-censored competing risks data [J].
Bakoyannis, Giorgos ;
Yu, Menggang ;
Yiannoutsos, Constantin T. .
STATISTICS IN MEDICINE, 2017, 36 (23) :3683-3707
[3]  
Carnicer J.M., 1993, Adv. Comput. Math., V1, P173, DOI DOI 10.1007/BF02071384
[4]   BOOTSTRAP CONSISTENCY FOR GENERAL SEMIPARAMETRIC M-ESTIMATION [J].
Cheng, Guang ;
Huang, Jianhua Z. .
ANNALS OF STATISTICS, 2010, 38 (05) :2884-2915
[5]   ESTIMATION AND TESTING IN A 2-SAMPLE GENERALIZED ODDS-RATE MODEL [J].
DABROWSKA, DM ;
DOKSUM, KA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :744-749
[6]   Cohort Profile: The international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa [J].
Egger, Matthias ;
Ekouevi, Didier K. ;
Williams, Carolyn ;
Lyamuya, Rita Elias ;
Mukumbi, Henri ;
Braitstein, Paula ;
Hartwell, Tyler ;
Graber, Claire ;
Chi, Benjamin H. ;
Boulle, Andrew ;
Dabis, Francois ;
Wools-Kaloustian, Kara .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2012, 41 (05) :1256-1264
[7]   Flexible smoothing with B-splines and penalties [J].
Eilers, PHC ;
Marx, BD .
STATISTICAL SCIENCE, 1996, 11 (02) :89-102
[8]  
Fine J P, 2001, Biostatistics, V2, P85, DOI 10.1093/biostatistics/2.1.85
[9]   Analysing competing risks data with transformation models [J].
Fine, JP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :817-830
[10]   A proportional hazards model for the subdistribution of a competing risk [J].
Fine, JP ;
Gray, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) :496-509