SIEVE ESTIMATION OF A CLASS OF PARTIALLY LINEAR TRANSFORMATION MODELS WITH INTERVAL-CENSORED COMPETING RISKS DATA

被引:1
作者
Lu, Xuewen [1 ,4 ]
Wang, Yan [1 ]
Bandyopadhyay, Dipankar [2 ]
Bakoyannis, Giorgos [3 ]
机构
[1] Univ Calgary, Calgary, AB, Canada
[2] Virginia Commonwealth Univ, Richmond, VA USA
[3] Indiana Univ, Indianapolis, IN USA
[4] Univ Calgary, Dept Math & Stat, Calgary, AB 2N 1N4, Canada
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
Bernstein polynomials; competing risks; cumulative inci-dence function; interval censoring; partially linear transformation model; semipara-metric efficiency; SEMIPARAMETRIC EFFICIENT ESTIMATION; REGRESSION-ANALYSIS; HAZARDS MODEL; INFERENCE; CONVERGENCE; CONSISTENCY; IEDEA;
D O I
10.5705/ss.202021.0051
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of partially linear transformation models with interval -censored competing risks data. Under a semiparametric generalized odds rate spec-ification for the cause-specific cumulative incidence function, we obtain optimal estimators of the large number of parametric and nonparametric model compo-nents by maximizing the likelihood function over a joint B-spline and Bernstein polynomial spanned sieve space. Our specification considers a relatively simpler finite-dimensional parameter space, approximating the infinite-dimensional param-eter space as n & RARR; & INFIN;. This allows us to study the almost sure consistency and rate of convergence for all parameters, and the asymptotic distributions and efficiency of the finite-dimensional components. We study the finite-sample performance of our method using simulation studies under a variety of scenarios. Furthermore, we illustrate our methodology by applying it to a data set on HIV-infected individuals from sub-Saharan Africa.
引用
收藏
页码:685 / 704
页数:20
相关论文
共 38 条
  • [1] Semiparametric regression on cumulative incidence function with interval-censored competing risks data
    Bakoyannis, Giorgos
    Yu, Menggang
    Yiannoutsos, Constantin T.
    [J]. STATISTICS IN MEDICINE, 2017, 36 (23) : 3683 - 3707
  • [2] Carnicer J.M., 1993, ADV COMPUT MATH, V1, P173, DOI [10.1007/BF02071384, DOI 10.1007/BF02071384]
  • [3] BOOTSTRAP CONSISTENCY FOR GENERAL SEMIPARAMETRIC M-ESTIMATION
    Cheng, Guang
    Huang, Jianhua Z.
    [J]. ANNALS OF STATISTICS, 2010, 38 (05) : 2884 - 2915
  • [4] Crowder M.J., 2001, Classical competing risks
  • [5] ESTIMATION AND TESTING IN A 2-SAMPLE GENERALIZED ODDS-RATE MODEL
    DABROWSKA, DM
    DOKSUM, KA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) : 744 - 749
  • [6] Cohort Profile: The international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa
    Egger, Matthias
    Ekouevi, Didier K.
    Williams, Carolyn
    Lyamuya, Rita Elias
    Mukumbi, Henri
    Braitstein, Paula
    Hartwell, Tyler
    Graber, Claire
    Chi, Benjamin H.
    Boulle, Andrew
    Dabis, Francois
    Wools-Kaloustian, Kara
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2012, 41 (05) : 1256 - 1264
  • [7] Flexible smoothing with B-splines and penalties
    Eilers, PHC
    Marx, BD
    [J]. STATISTICAL SCIENCE, 1996, 11 (02) : 89 - 102
  • [8] Fine J P, 2001, Biostatistics, V2, P85, DOI 10.1093/biostatistics/2.1.85
  • [9] Analysing competing risks data with transformation models
    Fine, JP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 817 - 830
  • [10] A proportional hazards model for the subdistribution of a competing risk
    Fine, JP
    Gray, RJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) : 496 - 509