Periodic orbits in a near Yang-Mills potential

被引:0
作者
Contopoulos, G. [1 ]
Harsoula, M. [1 ]
机构
[1] Acad Athens, Res Ctr Astron & Appl Math, Soranou Efessiou 4, Athens 11527, Greece
关键词
non linear dynamics; chaos; periodic orbits; DYNAMICAL-SYSTEMS; QUANTUM-MECHANICS;
D O I
10.1088/1402-4896/ace00e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically the orbits in the Yang-Mills (YM) potential V=1/2x(2)y(2) and in the potentials of the general form V=1/2[a(x(2)+y(2))+x(2)y(2)]. We found that the stable period-9 periodic orbit of the 2 YM potential belongs to a family of orbits that bifurcates from a basic period-9 family of the general form of the potential V, when a is slightly above zero. This basic period-9 family and its bifurcations exist only up to a maximum value of a = a(max). We calculate the Henon stability index of these orbits. The pattern of the stability diagram is the same for all the symmetric orbits of odd periods 3,5,7,9 and 11, that we have found. We also found the stability diagrams for asymmetric orbits of period 2,3,4,5 which have again the same pattern. All these orbits are unstable for a=0 (YM potential) except for the stable orbits of period-9 and some orbits with multiples of 9 periods.
引用
收藏
页数:11
相关论文
共 19 条
[1]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[2]   M2-brane dynamics in the classical limit of the BMN matrix model [J].
Axenides, Minos ;
Floratos, Emmanuel ;
Linardopoulos, Georgios .
PHYSICS LETTERS B, 2017, 773 :265-270
[3]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[4]   REGULAR AND CHAOTIC MOTION IN SOME QUARTIC POTENTIALS [J].
CARNEGIE, A ;
PERCIVAL, IC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (04) :801-813
[5]   THE STRUCTURE OF CHAOS IN A POTENTIAL WITHOUT ESCAPES [J].
CONTOPOULOS, G ;
PAPADAKI, H ;
POLYMILIS, C .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (02) :249-271
[6]  
Contopoulos G., 2002, ASTR AST LI, DOI 10.1007/978-3-662-04917-4
[7]   PERIODIC ORBIT QUANTIZATION OF BOUND CHAOTIC SYSTEMS [J].
DAHLQVIST, P ;
RUSSBERG, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20) :4763-4778
[8]   EXISTENCE OF STABLE ORBITS IN THE X2Y2 POTENTIAL [J].
DAHLQVIST, P ;
RUSSBERG, G .
PHYSICAL REVIEW LETTERS, 1990, 65 (23) :2837-2838
[9]   ON THE QUANTUM-MECHANICS OF SUPERMEMBRANES [J].
DEWIT, B ;
HOPPE, J ;
NICOLAI, H .
NUCLEAR PHYSICS B, 1988, 305 (04) :545-581
[10]   THE SUPERMEMBRANE IS UNSTABLE [J].
DEWIT, B ;
LUSCHER, M ;
NICOLAI, H .
NUCLEAR PHYSICS B, 1989, 320 (01) :135-159