Network models of chromatin structure

被引:9
作者
Pancaldi, Vera [1 ]
机构
[1] Univ Toulouse, Univ Toulouse III Paul Sabatier, Ctr Rech Cancerol Toulouse, CRCT,Inserm,CNRS, Toulouse, France
关键词
LONG-RANGE INTERACTIONS; 3D GENOME; FUNCTIONAL-ORGANIZATION; PRINCIPLES; CONTACTS;
D O I
10.1016/j.gde.2023.102051
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Increasing numbers of datasets and experimental assays that capture the organization of chromatin inside the nucleus warrant an effort to develop tools to visualize and analyze these structures. Alongside polymer physics or constraint-based modeling, network theory approaches to describe 3D epigenome organization have gained in popularity. Representing genomic regions as nodes in a network enables visualization of 1D epigenomics datasets in the context of chromatin structure maps, while network theory metrics can be used to describe 3D epigenome organization and dynamics. In this review, we summarize the most salient applications of network theory to the study of chromatin contact maps, demonstrating its potential in revealing epigenomic patterns and relating them to cellular phenotypes.
引用
收藏
页数:9
相关论文
共 50 条
[21]   STATISTICAL CURVE MODELS FOR INFERRING 3D CHROMATIN ARCHITECTURE [J].
Uzhilina, Lena ;
Astie, Trevor ;
Segal, Mark .
ANNALS OF APPLIED STATISTICS, 2024, 18 (04) :2979-3006
[22]   Chromatin globules: a common motif of higher order chromosome structure? [J].
Sanyal, Amartya ;
Bau, Davide ;
Marti-Renom, Marc A. ;
Dekker, Job .
CURRENT OPINION IN CELL BIOLOGY, 2011, 23 (03) :325-331
[23]   Key role for CTCF in establishing chromatin structure in human embryos [J].
Chen, Xuepeng ;
Ke, Yuwen ;
Wu, Keliang ;
Zhao, Han ;
Sun, Yaoyu ;
Gao, Lei ;
Liu, Zhenbo ;
Zhang, Jingye ;
Tao, Wenrong ;
Hou, Zhenzhen ;
Liu, Hui ;
Liu, Jiang ;
Chen, Zi-Jiang .
NATURE, 2019, 576 (7786) :306-+
[24]   Network models in the study of metabolism [J].
Rodriguez, Arsenio ;
Infante, Diogenes .
ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2009, 12 (04)
[25]   Properties of gene expression and chromatin structure with mechanically regulated elongation [J].
Sevier, Stuart A. ;
Levine, Herbert .
NUCLEIC ACIDS RESEARCH, 2018, 46 (12) :5924-5934
[26]   Predicting gene expression changes from chromatin structure modification [J].
Senapati, Swayamshree ;
Irshad, Inayat Ullah ;
Sharma, Ajeet K. ;
Kumar, Hemant .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2025, 11 (01)
[27]   Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences [J].
Cao, Fan ;
Zhang, Yu ;
Cai, Yichao ;
Animesh, Sambhavi ;
Zhang, Ying ;
Akincilar, Semih Can ;
Loh, Yan Ping ;
Li, Xinya ;
Chng, Wee Joo ;
Tergaonkar, Vinay ;
Kwoh, Chee Keong ;
Fullwood, Melissa J. .
GENOME BIOLOGY, 2021, 22 (01)
[28]   Models of chromosome structure [J].
Nicodemi, Mario ;
Pombo, Ana .
CURRENT OPINION IN CELL BIOLOGY, 2014, 28 :90-95
[29]   A review of deep learning models for the prediction of chromatin interactions with DNA and epigenomic profiles [J].
Wang, Yunlong ;
Kong, Siyuan ;
Zhou, Cong ;
Wang, Yanfang ;
Zhang, Yubo ;
Fang, Yaping ;
Li, Guoliang .
BRIEFINGS IN BIOINFORMATICS, 2024, 26 (01)
[30]   Polymer models are a versatile tool to study chromatin 3D organization [J].
Esposito, Andrea ;
Bianco, Simona ;
Fiorillo, Luca ;
Conte, Mattia ;
Abraham, Alex ;
Musella, Francesco ;
Nicodemi, Mario ;
Prisco, Antonella ;
Chiariello, Andrea M. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2021, 49 (04) :1675-1684